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1 Introduction

The broad objective of the proposed research was to develop, implement, and evaluate methods for the reconstruc-
tion of dedicated single-photon emission computed tomography (SPECT) scintimammography (SMM) images from a
relatively small number of projection views. SMM is a nuclear-medicine test with the potential to provide relatively
low-cost, minimally invasive differentiation of breast abnormalities identified by physical examination or mammogra-
phy. It relies on the preferential uptake of Tc-99m-sestamibi or other radionuclides in breast malignancies as compared
to normal breast tissue or benign abnormalities. This focal uptake can be imaged in a number of ways, though the most
widely used clinical protocol involves acquiring one or two planar views while the patient lies prone on a specially
designed table. However, preliminary experimental work, verified theoretically in our own work, has suggested that a
dedicated breast SPECT geometry, in which a small camera revolves around a dependent breast, would provide better
lesion detectability than do the planar or conventional SPECT geometries. The drawback of this approach would be
the relatively long time needed to acquire the number of projection views traditionally used for SPECT image re-
construction. The aim of this research, then, was to reduce imaging time in dedicated breast SPECT by developing
algorithms that allow images to be reconstructed from a smaller number of projection views than is conventionally
used while maintaining diagnostically useful image quality. Whereas the original strategy was to develop fully itera-
tive reconstruction techniques incorporating prior assumptions about the structures being imaged, these assumptions
proved difficult to quantify, the resulting algorithms computationally intensive, and the reconstructed images relatively
poor. Moreover, many unresolved issues regarding regularization and stopping rules plague these iterative approaches.
We have thus pursued an alternative strategy involving sinogram preprocessing, in which each projection view is first
smoothed using Fourier or spline-based, Bayesian techniques and then additional projection views are interpolated,
again using Fourier or spline-based techniques, prior to reconstruction by filtered backprojection (FBP). The physical
characteristics of the algorithms, such as resolution and noise properties, were to be characterized through the use of
simulated data, and the methods then applied to real phantom and clinical patient data.

2 Body

While the unexpected findings that always accompany a research project lead us in some directions that were not
anticipated in the original proposal, all of the tasks detailed in the original statement of work were accomplished or
addressed in some form, with the exception of the last two (tasks 9 and 10), pertaining to technical objective 5. This
objective involved testing the algorithms in a clinical setting, with the cooperation of Dr. Patrick Peller of Lutheran
General Hospital in Chicago, who had proposed to develop a dedicated breast imaging miniature gamma camera in
collaboration with the University of Chicago. This project, which was independent of the one being discussed in this
report, did not come to fruition, and thus no clinical SPECT SMM yet exists on which to test the algorithms. To
compensate for this, more attention was paid to the analytic characterization of the algorithms’ performance.

The remainder of this section will describe the research accomplishments associated with each task outlined in the
original statement of work.

Technical Objective 1

To develop algebraic reconstruction technique-based algorithms for the reconstruction of MIBI distribution in breasts
from few views, including some algorithms that reconstruct a purely binary reconstruction image.

2.1 Task 1—Implementing ART

Finish implementing standard algebraic reconstruction technique algorithm.




We succeeded in implementing the class of algorithms known as algebraic reconstruction techniques (ART) for
few-view reconstruction. Unlike the clinically standard filtered backprojection (FBP) algorithm, ART algorithms make
no implicit assumptions about the completeness of the data but rather seek to produce iteratively a solution that best
matches the data that is available, according to some precise definition of “best.” Thus, because ART is an explicitly
discrete algorithm rather than a discretization of an algorithm based upon a continuous analysis, our hypothesis was
that the ART algorithms would fare better than FBP in reconstructions from limited numbers of views. In fact, this
hypothesis was not entirely supported by our findings. Even in the absence of noise, the quality of the reconstructed
images as compared to FBP was not sufficiently high to justify the large computational burden of the approach. In the
presence of noise, images reconstructed by the ART approach were really quite poor, even compared to ramp-filtered
FBP. These same general trends held for reconstructions from standard and small numbers of views. The methods and
these findings are now discussed in greater detail.

2.1.1 Methods—ART

In their most basic form, ART algorithms begin with an initial “guess” of the image, often just a uniform image, then
project this estimate and compare the result to the measured data. The resulting differences are used to update the
image pixel values. The process continues either for a prespecified number of iterations or until the magnitude of
the changes from one iteration to the next falls below some prespecified threshold. One popular form of the iterative
update procedure is given by the following equation

(k)
S+ _ 20 ga ;}ﬁzk,? >, "
< Hy,Hy >
where 7® and 7+ represent the current estimate of the image vector after the kth and (k + 1)st iterations,
respectively, i, = [k mod I+1], I is the total number of projection rays, g, is the measurement for the ,th projection
ray, H;, is the transpose of the ixth row of the projection matrix H relating the image vector to the measurement
vector, and () denotes an inner product [1, chapter 11].

We implemented an ART algorithm that made use of equation (1). The 4, jth element of the projection matrix
H was chosen to equal the intersection length between the ith pixel and the jth projection ray. To calculate these
intersection lengths, we used an efficient algorithm, due to Siddon [2], in which the intersections of rays with separate
grids of parallel horizontal and vertical lines are computed, the intersections ordered appropriately, and the differences
computed. In the interest of storage efficiency, we stored the weights corresponding only to a single projection view
at any one time, recomputing them anew at each iteration. To further reduce storage requirements, we only stored
non-zero weight elements along with a separate list of their corresponding indices.

We tested the algorithm by reconstructing images of a numerical breast phantom containing large, low-contrast
background structures, as well as two small lesions, one centrally and the other peripherally located. Because all of
the structures are ellipses, the phantom’s projections could be computed analytically, and we generated sinograms of
64 angles x 64 bins and 16 angles x 64 bins. We reconstructed each of these using ART and FBP (using a ramp filter
with cutoff at the Nyquist frequency). We then added Poisson noise (200,000 total counts in the 64-angle sinogram,
50,000 counts in the 16-angle sinogram) and reconstructed using the same techniques.

2.1.2 Results and conclusions—ART

The results of the ART and FBP reconstructions are illustrated in Fig. 1. The ART reconstructions are obviously
disappointing and especially so in the presence of noise. Both methods perform well for the noise-free reconstructions
from 64 angles, but in the presence of noise, it is more difficult to discern the lesions in the ART reconstruction than in
the FBP image. Moreover, the ART reconstruction contains noise structures that could be mistaken for lesions. In the
noise-free, 16-angle reconstructions, the lesions are again more visible in the FBP reconstruction despite the presence




Figure 1: Reconstructions of a numerical breast phantom using ART and FBP. The top row corresponds to a 64-angle
sinogram and the bottom row to a 16-angle sinogram. Column (a) is reconstructed by ART from noise-free data,
column (b) by FBP from noise-free data, column (c) by ART from noisy data, and column (d) by FBP from noisy data.

of distracting star artifacts. Finally, while the lesions are difficult to discern in either of the noisy 16-angle reconstruc-
tions, the FBP reconstruction again seems superior. Coupled with the fact that ART is much more computationally
intensive than FBP, these results are unencouraging.

The reasons for ART’s poor performance in the noise-free case may lie in the combination of numerical instability
and the lack of regularization in the straightforward ART implementation of equation (1). Clearly these factors are
only exacerbated in the presence of noise. Attempts to improve the quality of the reconstructions by incorporating
explicit statistical information as well as prior assumptions about the simplicity, symmetry, and near-binary nature
of the expected reconstructions met with numerous difficulties. The most natural constraints did not lend themselves
to efficiently implementable mathematical formulations and approximations of the constraints led to computationally
intensive algorithms with little apparent advantage over FBP. These poor results prompted us to modify our approach
to tasks 2 and 3, leading us to develop and characterize algorithms that are alternatives to ART rather than extensions
of it.

2.2 Task 2—Characterizing angular sampling requirements

Using numerical simulation, systematically explore the dependence of reconstruction image quality on the number of
projections and the complexity of the input image.

In this task, we aimed to characterize angular sampling requirements for dedicated SPECT SMM. The minimum
number of angular views required to produce an accurate tomographic reconstruction of a given object is dictated by
two factors. First, the angular sampling of the object’s sinogram must satisfy, at least approximately, the Nyquist
sampling condition. Absent this, any reconstruction is doomed to suffer from angular aliasing artifacts. Second, the
number of angular samples must satisfy any implicit assumptions made by the reconstruction algorithm about the
density of angular sampling. The surprising success of FBP in the comparisons with ART in task 1, even for few-
view reconstructions, prompted us to reconsider its application to the few-view reconstruction problem and, in the
context of this task, to investigate its particular angular sampling requirements. That the FBP and Nyquist sampling
requirements are not necessarily equivalent can be appreciated most keenly when considering the case of imaging a




circularly symmetric object. In this instance, a single projection view is sufficient to satisfy the Nyquist sampling
condition, while a FBP reconstruction from this single view would be an uninterpretable set of parallel streaks. The
significance of this investigation is that if the Nyquist condition were satisfied by a number of samples less than the
number required by FBP, it would be in principle possible to interpolate the additional views needed to eliminate the
star artifacts without compromising the accuracy of the images or introducing new artifacts.

2.2.1 Methods—Angular sampling requirements in FBP

In [3], Brooks et al. present an elegant analysis of FBP’s angular sampling requirements for reconstructing a circularly
symmetric object without significant angular-sampling artifacts. This requirement provides a lower bound on the
number of angular views needed to reconstruct a more general, asymmetric object without significant angular-sampling
artifacts. The analysis also provides insight into the nature of the artifacts that arise when these requirements are not
met. They show that the error term, or the difference between the exact reconstruction and the reconstruction from M
views, is given by

e(r,0) = 2n(—1)M cos(2M6) /_ ” P(v)Jop (2mvr)dy, 2

where 7, 8 are polar coordinates in image space, 13(1/) is the Fourier transform of the filtered projections (they are all,
of course, identical for a circularly symmetric object), and Joas(z) is a Bessel function of the first kind of order 2.
A few features of this error term bear mention. First, the cos(2M#) factor, which represents an angular modulation,
accounts for the star-like appearance of few-view FBP reconstructions. Second, the radial oscillation of the Bessel
function accounts for the broken appearance of the streaks comprising the star. Finally, the Bessel function Ja s (z) is
essentially zero until its argument becomes approximately equal to its order. Thus, Brooks ez al. argue, the error term
is negligible if the order 2M exceeds the maximum value of the argument by about 10%. The maximum value of this
argument obtains when v = vmax = 4—}}? and r = Rg, where L is the number of projections bins and Ry the radius
of the field of view, and thus they find that a reasonable estimate of the number of views needed over  to effectively
eliminate angular-sampling artifacts is given by

1.17L

M > 3

Again, because this result was obtained for a circularly symmetric object, it should be viewed as a lower bound for the
number of views needed for reconstruction of an arbitrary, asymmetric object.

2.2.2 Methods—Nyquist angular sampling requirements for breast phantoms

Given this result for FBP’s angular sampling requirements, we turned to an analysis of the sampling requirements on
the angular component of the sinogram of a model breast phantom. We made use of the circular sampling theorem
(CST), which states that a function f(6) that is periodic with period 27 and bandlimited to frequency v, = K/2m
(i.e., the coefficients F}, of the function’s Fourier series satisfy Fy, = 0 for |k| > K) can be recovered exactly from its
samples f(2mj/MN),j=0,...,N = 1,if N > 2K [4,5].

We modeled the breast phantom as consisting of an outer boundary represented by a circle of radius R centered at
the origin and a lesion, modeled as a Gaussian profile of radial width (standard deviation) R, centered at a position
(z0,0). Thus the activity distribution t(z, ) can be described by

t(z,y) = Apcirc ( v+ y2) + A exp {—M} , )

R 27R2 2R2

where circ(r/R) denotes a circle of radius R, and A, and A; are the background and lesion activity concentrations,
respectively. Placing the lesion on the x -axis simplified the analysis but did not affect any of the conclusions as they




must necessarily be invariant under a rotation of the phantom. The off-center lesion determined the angular sampling
requirements, as the outer circle, being circularly symmetric, produces a sinogram with no angular variation at all.

The most straightforward way to approach the problem would have been to compute analytically the sinogram of
this off-center lesion and then to have expanded the angular component in a Fourier series to determine its angular
bandwidth. Unfortunately, this tack is mathematically intractable. Fortunately, by invoking the central slice theorem,
an equivalent analysis could be performed by computing the 2D Fourier Transform (FT) of the off-center lesion,
expressing the result in polar coordinates, and computing the Fourier series of the azimuthal variable.

The basic outline of this approach is given here. The 2D FT of an unshifted Gaussian (i.e., with zo = 0) is given
simply by

Tyy—0(Va,vy) = AiRE exp { -2 R3 (V2 + 1/5)} , %)

where v, and v, are the frequencies conjugate to z and y, respectively. By the Fourier shift theorem, the 2D FT of an
off-center lesion differs from that of a centered lesion only by a phase factor:

T(ve,vy) = AR, exp {—2m°R3 (V2 + 1/5)} exp(—j2mv,xo). 6)
Expressing this in polar coordinates (v, 8) yields
T(v,0) = AR} exp (—2n°Riv) exp(—j2mzov cos6). @)

Now we wish to compute the Fourier series coefficients for an expansion in 6:
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The factor in square brackets is given by (—3)*Ji (2mvz0), so
Ti(v) = AR3 exp (—2m*R3v) (—5)* Ju (2mvao). (10)

It is well known that Ji(z) is negligible for |[k| > |z|, and thus we conclude that T} (v) is negligible for |k| >
27vzo. Thus by the circular sampling theorem, we require N > 4mVmaxTo samples, or M > 27 Vmax® projections
(each projection provides two azimuthal samples in frequency-space) to adequately sample the angular portion of this
object’s sinogram for all relevant v. The highest significant frequency vmay is determined by identifying the v beyond
which T} (v) falls below some cutoff. This is determined principally by the exp (—2#?Rjv) factor in Eq. 10, which
is a Gaussian of standard deviation 1/(2w Ro). If we set the cutoff max to be the point at which the Gaussian falls to
1% of its peak value,

3.0
Vmax — m, (11)

we thus conclude that .
M>30=2 (12)

Ry
is the number of projections required over 7 for reasonable satisfaction of the Nyquist condition on the angular com-
ponent of the sinogram.

To get a sense of the requirement imposed by this expression, consider the SPECT phantom experiments to be
discussed in Sec. 2.8.1, with a physical phantom comprising a cylinder of radius 7 cm containing a spherical lesion of
radius 0.5 cm placed about 5 cm from the axis of the cylinder, which is itself aligned with the SPECT system’s axis of
rotation. While the true 2D cross section of a spherical lesion is obviously a circle, the finite radial resolution of the
system means that the Gaussian model is likely more appropriate for the “effective” lesion being reconstructed, and,




moreover, that its effective radius Ry should be estimated by adding its actual radius in quadrature with the standard
deviation of the system’s resolution function, assumed to be a Gaussian. For a system resolution of FWHM 1.5 cm,
we find Ry & 1/0.52 + (1.5/2.35)2 = 0.81 cm, where we have used the fact that for a Gaussian the FWHM= 2.350.
For zg = 5 cm, this means that we require M > 19 projections to satisfy reasonably the angular sampling requirement
of Eq. 12. By comparison, because L = 128 bins on this system, Eq. 3 predicts that FBP requires on the order of
110 projections simply to reconstruct the outer circle accurately; its requirements for accurate reconstruction of the
lesion may be higher still. Thus, in this case, the Nyquist sampling condition on the angular part of the sinogram can
be satisfied by a smaller number of angles than is needed to produce FBP images that are essentially free of angular
sampling artifacts.

A few caveats should accompany this argument. In the experiment discussed in Sec. 2.8.1, a full-size SPECT
system is being used to image a relatively compact phantom. In practice, the field of view and the number of detector
elements could be halved and still encompass the object, but even in this case, with L = 64, the FBP requirement is still
on the order of 55 projections and thus still higher than the Nyquist requirement. A second potential counterargument
is that the analysis of Eq. 2 indicates that the error for imaging a circularly symmetric object tends to get shifted
toward the periphery of the field of view as the number of views are increased, so it could be argued that the FBP error
introduced by the large outer circle would not necessarily impede detectability of the lesion. However, this neglects
the fact that the off-center lesion itself will likely radiate streak artifacts in a few-view FBP reconstruction. These may
not overlap itself, but they could create the appearance of additional lesions elsewhere in the phantom, or, if there is
genuinely a second lesion present, interfere with its detection.

In any case, the argument developed in this section at least suggests that there are times, especially when imaging
relatively simple objects, when the Nyquist sampling condition for the angular component of the sinogram can be
satisfied by a smaller number of angles than is needed to produce FBP images that are essentially free of angular
sampling artifacts. In these situations, the additional projections needed by FBP can, in principle, be interpolated from
the measured ones.

2.3 Task 3—Modifying the ART approach
Modify the algorithm to perform a purely binary reconstruction of the MIBI distribution.

As discussed above, the poor performance of the ART algorithm discovered with the completion of task 1 lead
us to develop algorithms that are alternatives to ART rather than extensions of it. The analysis of angular sampling
requirements carried out in task 2 suggested one approach—interpolating additional views in the few-view sinogram
prior to reconstruction by FBP. Because the Nyquist sampling requirements for a typical breast image are modest, it
may be possible to eliminate FBP’s star artifacts by use of such interpolation without compromising the accuracy of
the images or introducing new artifacts. In this section we describe the various interpolation approaches considered as
well as our efforts to characterize their accuracy and noise properties.

2.3.1 Methods—Sinogram interpolation

The interpolation method used should of course exploit the periodicity of the data in the angular coordinate, and we
have explored four popular periodic interpolation approaches: linear interpolation with periodic boundary conditions,
periodic spline interpolation, zero-padding (ZP) interpolation, and circular-sampling theorem interpolation (CST).
Linear interpolation needs no introduction, and ZP is also quite familiar: it involves extending the discrete Fourier
transform (DFT) of a finite sequence with zeroes and then taking an inverse DFT to obtain a more densely sampled
version of the sequence, with values interpolated at intermediate positions between the original measured samples
[6, 7, 8]. CST interpolation is a special case of Whittaker-Shannon (W-S) sinc interpolation that applies to periodic
functions. The CST holds that if a function g(z) is periodic with period X, it can be reconstructed from a finite
number N of samples taken over one period. Specifically, consider g(z) to be sampled such that g, = g(nAxz), where
Az = X/Nandn =0,...,N — 1. If g(z) is bandlimited to frequency K (i.e., the coefficients of expansion ay, of the




function’s Fourier series satisfy a;, = 0 for |k| > K), and if N > 2K + 1 and is odd, then g(z) can be reconstructed

exactly from its samples by use of
=2 sin [ (z — nAg)]

gl@) = I Nsin [Z (z - nAz)]’

n=0

(13)

Similarly, if N > 2K and is even, then the value of g(z) may be determined exactly at arbitrary z using

=2 [sin[Z2(N-1)(z-nAz)] 1 7r
9lo) = Z In { NXsin [% (z — nAz)] N s [E (== nAm)} ' (14)

n=0

As for periodic spline interpolation, it involves fitting the data with piecewise cubic polynomials that are continuous
up to and including the second derivative at the joints between pieces [9, 10]. A spline g(z) can be represented by

9(z) = an + by (x — 20) + cnlz — wn)2 +dn(z — xn)B, T € [Tn, Tny1), (15)

and it can be shown that the coefficients a,,, by, ¢n, and d,, can be obtained from the vector g of measured data points
through matrix multiplications of the form a = Ag, where the matrices such as A are independent of the data and are
constructed in accordance with periodic boundary conditions.

2.3.2 Results—Connections among interpolation methods

The first aspect of the interpolation work was to explore the little-understood connections among ZP, CST, and W-
S interpolation. We showed that they are in fact mathematically equivalent for the task of increasing the density of
angular samples, with ZP interpolation being by far the most computationally efficient. The proof of these equivalences
is given in the paper entitled, “Mathematical equivalence of zero-padding interpolation and circular sampling theorem
interpolation with implications for direct Fourier image reconstruction,” which is included as an appendix to this
report.

Interestingly, while we are primarily concerned with the interpolation of additional projection views in the spatial
domain for use in FBP reconstruction, that paper also discusses the application of the interpolation approaches to an
alternative reconstruction approach: direct Fourier reconstruction. Direct Fourier techniques are based on the central
slice theorem, which states that the Fourier transform of each projection view corresponds to a line through the origin
in the Fourier transform space of the object being imaged. The Fourier transforms of a set of projection views then
provides a set of polar samples of the object’s Fourier transform. If the samples are interpolated onto a Cartesian grid,
the object can then be reconstructed by use of the 2D fast Fourier transform. Researchers had previously proposed
using the CST to perform the azimuthal interpolation needed to make that coordinate transformation [11, 12], but
our work established that an alternative approached, proposed by Pan and Kak [13], in which ZP interpolation was
used to increase the density of samples in the azimuthal direction prior to the use of linear interpolation to make
the final jump onto the Cartesian grid, was nearly equivalent and much more efficient. Again, details are given in
the paper “Mathematical equivalence of zero-padding interpolation and circular sampling theorem interpolation with
implications for direct Fourier image reconstruction,” which is included as an appendix to this report.

2.3.3 Results—Comparative accuracy of interpolation methods

Having established the equivalence of ZP and CST interpolation, we then dropped the CST from further consideration
(owing to ZP’s computational advantages) and turned to the task of comparing the accuracy of the remain approaches.
Specifically, we have compared the accuracy of the ZP and periodic spline interpolation approaches, as well as lin-
ear interpolation with periodic boundary conditions, for the task of interest: interpolating additional projections in a
few-view sinogram [14]. Simply comparing the success of the approaches in interpolating a single sinogram each
for one or two canonical phantoms would have provided more anecdotal than genuinely rigorous evidence on which
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to base the choice of interpolation method for few-view tomography. The outcome could have depended as much
on numerical happenstance as on the genuine strengths of the approaches. Instead, we generated 100 different “re-
alizations” of each of the two types of numerical phantom—Shepp-Logan and breast—by choosing the parameters
specifying the constituent ellipses of each type to vary according to predetermined probability laws. Corresponding
sinograms of 128 binsx 1024 projection views were computed analytically and subsampled to 16, 32, 64, 128, 256,
and 512 projection views. Each subsampled sinogram was interpolated to 1024 projection views by each of the meth-
ods under consideration and the normalized root-mean-square-error (NRMSE) with respect to the true 1024 projection
view sinogram computed. In addition, images were reconstructed from the interpolated sinograms by FBP and the
NRMSE with respect to the true phantom computed. The non-parametric signed rank test was then used to assess the
statistical significance of the pairwise differences in mean NRMSE among the interpolation methods for the various
conditions: phantom family (Shepp-Logan or breast), number of measured projection views (16, 32, 64, 128, 256,
or 512), and endpoint (sinogram or image). Periodic spline interpolation was found to be superior to the others in a
statistically significant way for virtually every condition. Further details are provided in the paper “Comparison of
angular interpolation approaches in few-view tomography using statistical hypothesis testing,” which is included as an
appendix to this report. Tables 1-4 and Figs. 2 and 3 of that paper contain the principle results summarized here.

2.3.4 Results—Comparative noise properties of interpolation methods

We have also calculated analytic expressions for the propagation of noise from the measured samples into the interpo-
lated curves for the methods under consideration. Consider a periodic function g{z) having period X that is sampled

N times over one period, i.e. at points z,, = Xn/N forn = 0,..., N — 1. Assume each measurement is corrupted
by additive, zero-mean noise. The measured samples of g(x) can then be represented as
g(zy) = <g(mn)> +n(z,), (16)

where bold-faced type denotes a random variable, () represents the expectation operator and g(z) is the additive,
zero-mean noise. Let g() be the curve interpolated from the noisy samples of equation (16). The covariance of this
function for two points z and z' is defined by

cov(z,2') = ([8(z) — (8(=))] [B(z") — (€(=")])- (17

Of course, once the covariance has been computed, the variance at any point z is given by var(z) = cov(z, z).

Evaluation of equation (17) was straightforward for CST and ZP interpolation, but more subtle for spline interpola-
tion. Details of the evaluations are given in the paper entitled “Noise properties of periodic interpolation methods with
implications for few-view tomography,” which is included as an appendix to this report. Fourier-based interpolation
has the favorable noise property that when it interpolates among samples contaminated with zero-mean white noise
of a given variance, the resulting interpolated curve has stationary noise with the same variance. When interpolating
among samples contaminated with Poisson noise, the resulting interpolated curve has variance that is flat locally and
that tracks the noise in the measured samples over longer distances. These properties are desirable because wide fluc-
tuations in noise levels in the interpolated curve can lead to artifacts in reconstructed images. Linear interpolation does
lead to such wide fluctuations, with the variance at points midway between measured samples falling to half the level
of the variance in the measured samples when interpolating among samples contaminated with zero-mean white noise.
The noise properties of spline interpolation lie somewhere between those of Fourier-based and linear interpolation.
Specifically, when interpolating among samples contaminated with zero-mean white noise, the resulting interpolated
curves display only a slight dip in variance between the positions of the measured samples. Similar local behavior is
observed in the case when the samples are contaminated by Poisson noise.

The results just discussed of course apply directly to the characterization of noise properties of sinograms in
which additional views have been interpolated by the methods under consideration. However, it is just as important
to consider the noise properties of the images reconstructed from such sinograms, because these noise properties,
as characterized by a noise power spectrum (NPS), greatly influence the detectability of small objects {15]. For this
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reason, we wished to calculate the NPS of images reconstructed after sinogram interpolation by ZP and periodic spline
interpolation, as well as the NPS of images reconstructed directly from both a small and large number of views.

Although the noise power spectrum is strictly defined only for stationary noise processes, and the noise in images
reconstructed from interpolated sinograms is not stationary due to the correlation between projections, there is prece-
dent for examining the so-called average power spectrum of nonstationary processes [16]. Details of the methods are
given in the paper “Noise properties of periodic interpolation methods with implications for few-view tomography,”
which appears as an appendix to this report, and the results are given in Fig. 5 of that paper, where it is seen that the
ZP NPS is much more similar to the NPS of images reconstructed from a full complement of 120 original views than
was the spline NPS. Indeed, the spline NPS demonstrated the existence of non-uniform angular correlations that could
potentially hinder detection tasks.

2.3.5 Conclusions—Sinogram interpolation

We have thus conducted extensive investigations of the connections among, as well the accuracy and noise properties
of the methods under consideration for interpolation of additional views in a few-view sinogram. It is perhaps worth
summarizing the important findings and conclusions.

o We have shown that ZP interpolation and CST interpolation are mathematically equivalent insofar as the discrete
sets of values yielded by ZP interpolation are the same as would be yielded at those points by CST interpolation.

e We have compared the accuracy of ZP, periodic spline, and linear interpolation satisfying periodic boundary
conditions for the interpolation of additional views in a few-view sinogram and found that periodic spline inter-
polation is almost always the most accurate in practice. Despite its theoretical exactness, zero-padding tends to
produce ringing artifacts when faced with mild violations of its assumptions about the data.

e We have studied the noise properties of curves interpolated by means of the three methods as well as images
reconstructed from sinograms with additional views interpolated by means of the methods. ZP interpolation
has, in general, the best performance because it yields curves and images with more stationary noise than those
produced by the other approaches.

e This noise finding should probably carry less weight than the accuracy finding, because, in general, it is best
to mitigate noise by smoothing each measured projection prior to the interpolation of additional views. Thus,
on the basis of the accuracy studies, periodic spline interpolation is our preferred method for the generation of
additional views in a few-view sinogram. The question of how best to smooth the measured projections is the
topic of the next task, which involves the development of a Bayesian approach to that problem.

Technical Objective 2

To develop Bayesian algorithms that incorporate prior knowledge about the distribution being imaged, in particular
the knowledge about the boundary of the suspected lesion extracted from the binary lesion of objective 1.

2.4 Task 4—Develop a Bayesian algorithm
Develop a Bayesian algorithm that incorporates prior knowledge about the MIBI distribution.

Bayesian algorithms refer to algorithms that maximize some sort of posterior distribution comprising two terms:
a likelihood term reflecting the distribution of the measured data conditional on the underlying quantity of interest
and a regularizing term reflecting some prior beliefs about the likely distribution of the underlying quantity of inter-
est itself. While Bayesian algorithms have often figured in medical tomography as a means of regularizing the fully
iterative maximum-likelihood expectation-maximization (MLEM) algorithm, we have developed an alternate form of
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Bayesian algorithm that operates purely in the projection domain and incorporates information about the expected
smoothness of the projections. Reconstruction then proceeds by use of FBP. The approach leads to statistically sig-
nificant improvements in resolution/variance tradeoffs relative to those achievable by use of the projection-smoothing
approaches usually used in concert with FBP. Moreover, a generalization of the approach allows for a degree of con-
trol over resolution uniformity and isotropy properties that is quite difficult to achieve in the context of fully iterative
Bayesian approaches.

2.4.1 Methods and results—A Bayesian, roughness-penalized nonparametric regression projection smoothing
approach

We have developed a projection-smoothing approach that is a form of Bayesian, roughness-penalized nonparametric
regression. It entails fitting to the measured projection samples at each view smooth curves that maximize an objective
function that comprises two terms. The first term is a Poisson likelihood and the second is a term that penalizes exces-
sively jagged fit curves. Thus the prior information about the object that is being incorporated are that its projections
are relatively smooth. The smoothed curves are then resampled and reconstruction proceeds by use of FBP without
any additional filtration (other than the requisite ramp). This Bayesian smoothing step is thus an alternative to the usual
apodization of the ramp filter used to mitigate noise in FBP. The shortcoming of apodization is that it is equivalent to
convolution with a shift-invariant filter in the projection domain. This is optimal only for data contaminated by sta-
tionary noise, whereas noise in emission tomography follows a Poisson distribution and is, in general, nonstationary.
The explicit modeling of the Poisson statistics in our approach leads to statistically significant improvements in the
noise/resolution tradeoffs relative to that achievable by use of simple shift-invariant apodization filters.

The basic technique is introduced in the paper entitled “Few-view tomography using roughness-penalized non-
parametric regression and periodic spline interpolation,” which is included as an appendix to this report. Each set of
projection samples g; = p(%3)(&;),i=0,..., N —1, where ¢; denotes the projection view, &; the projection bin, and N
the number of bins per projection, is fit with a curve p(%3) (¢;) maximizing a roughness-penalized Poisson likelihood

function
N-1

®(p,g) = Y [g:Inp(&) — p(&)] - a/[P"(E)]ZdE, (18)
=0
where "' denotes the second derivative, o is the smoothing parameter, and where, for simplicity, we have dropped the
dependence on ¢;. It can be shown that this objective function is always maximized by a natural cubic spline, which
is simply a cubic spline constrained to be linear beyond the first and last measurement points. The coefficients of the
spline can be found through a computationally efficient iterative procedure.

A very interesting generalization of the technique, along with substantial characterization of its resolution prop-
erties, is described in the paper entitled “Nonparametric regression sinogram smoothing using a roughness-penalized
Poisson likelihood objective function,” which appears as an appendix to this report. The generalization involves en-
forcing the smoothness constraint not on the underlying function itself, but rather on some monotonic transformation
of it. This generalization makes it possible to exert control over resolution uniformity and isotropy properties, and
specifically, through the choice of a square root link function, to achieve essentially uniform and isotropic resolu-
tion in reconstructed images with little sacrifice is resolution-variance tradeoffs. This is a very desirable outcome
that is difficult to achieve in the context of fully iterative Bayesian approaches. Standard quadratic penalties in the
fully iterative context lead to decidedly nonuniform resolution and the design of penalties that lead to uniform and
isotropic resolution is complicated and time consuming. All of these issues are discussed in greater detail in the paper,
“Nonparametric regression sinogram smoothing using a roughness-penalized Poisson likelihood objective function,”
but in short, the proposed approach has some clear advantages that can be summarized as follows: It has statistically
significant resolution/noise advantages over apodization windows, it captures some of the statistical benefits of a fully
iterative reconstruction algorithm, at a fraction of the computational cost, and it also can also be used to produce
images having uniform and isotropic resolution more naturally than when making use of fully iterative algorithms.
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2.4.2 Methods—Direct spline reconstruction

When smoothing splines are fit to each projection in the nonparametric regression technique, they must be resampled
to yield a discrete sinogram if reconstruction is to proceed by FBP. Discarding the continuous information embod-
ied in the spline coefficients seems wasteful because after filtration of these samples the FBP algorithm interpolates
among them during backprojection. We have investigated an alternative to FBP in which the reconstructed image is
expressed explicitly in terms of the coefficients of the splines fit to the projections. While evaluating this expression
is computationally intensive, the approach is found to yield higher resolution images than does FBP. This approach is
described in detail in the paper “Spline-based inverse Radon transform in two and three dimensions,” which is included
as an appendix to this report. Unfortunately, the intensive computational demands of the resulting algorithm for 2D
reconstruction (it fares much better in 3D) preclude its incorporation into the family of algorithms under development.

Technical Objective 3

To use numerical simulations to determine the optimal number of projection angles to be used by each of the algorithms
developed, from the standpoint of maximizing diagnostic accuracy while minimizing image acquisition time.

2.5 Task 5—Characterize diagnostic accuracy of few-view reconstructions

Define a cost function that represents the tradeoff between improving diagnostic accuracy and reducing image acqui-
sition time. Apply the function to all the algorithms developed in tasks 3 and 4.

The aim of this task was to establish whether the algorithm developed—the combination of Bayesian projection
smoothing and spline-based interpolation of additional projections—manages to preserve diagnostic information that
is present in images reconstructed from standard numbers of views when reconstructing from smaller numbers of
views. To this end, we chose to image a cardiac phantom containing a 1-cm defect insert and placed at increasing
radial offsets from the center of rotation of a SPECT system. Placing the phantom at increasing radial offsets increases
the bandwidth of the angular functions at each projection bin and thus makes the interpolation task more challenging.
The diagnostic information of interest in this situation is the detectability of the defect, and as a figure of merit we
generated bullseye plots [17] from each set of reconstructions. These are remappings of the reconstructed cardiac
phantom images that make it very clear whether or not a defect is detectable in the reconstructed data or not.

2.5.1 Methods—Assessment of diagnostic accuracy

To carry out this task, projections were acquired of a Data Spectrum ventricular phantom placed at five different
radial offsets—0, 5, 9, 12, and 15 cm—from the center of rotation of a Picker 3000XP three-headed SPECT system
fit with low-energy, high-resolution, parallel-hole collimators. The phantom was filled with 121 MBq (3.27 mCi) of
Tc-99m, and contained a 1-cm defect insert. The acquired studies contained 120 projections over 360°. A 25-cm
radius circular orbit and step-and-shoot mode was used for all of the acquisitions; each head acquired to a 128 x128
pixel image, although only the 32 slices spanning the phantom were preserved. A total of about 500,000 counts was
collected. From this data 3D sinograms were extracted corresponding to 15, 30, 60, and 120 projections, respectively.
Thus we had 20 different sinograms, corresponding to the 20 possible combinations of radial offset and number of
angular views. We reconstructed images from these 20 sinograms using four different processing techniques:

1. No pre-smoothing of the sinogram and slice-by-slice reconstruction from available projections by FBP using a
Hanning filter (cutoff=0.8).

2. No pre-smoothing of the sinogram, spline interpolation from the available projections to 120 projections, and
slice-by-slice reconstruction by FBP using a Hanning filter (cutoff=0.8).
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3. Spline-based, roughness-penalized Poisson likelihood smoothing of the sinogram (using the identity link) and
slice-by-slice reconstruction from the available projections by FBP using a ramp filter (cutoff=1.0).

4. Spline-based, roughness-penalized Poisson likelihood smoothing of the sinogram (using the identity link), peri-
odic spline interpolation from the available projections to 120 projections, and slice-by-slice reconstruction by
FBP using a ramp filter (cutoff=1.0).

In applying the roughness-penalized nonparametric regression smoothing, the smoothing parameter A was selected by
an automatic procedure known as cross-validation, modified to account for the Poisson statistics [18, 19, 20, 21].

2.5.2 Results—Assessment of diagnostic accuracy

For ease of comparison and simplicity of presentation, the reconstructed images are grouped in Fig. 2 by the number
of projections in the original sinogram, and are shown for only three of the radial offsets: 0,9, and 15 cm. These three
suffice to illustrate the trends observed. For each combination of number of projections and radial offset we show the
results of reconstructing using each of the four techniques outlined above.

We observe that reconstructions from available projections without pre-smoothing or interpolation display star-
shaped artifacts and a mottled appearance when the number of projections is small. Interpolation alone mitigates the
star-shaped artifacts but leads to severe circular artifacts, particularly in the case of a small number of projections and
a large radial offset. Smoothing alone reduces the noise visibility but has little effect on the star-shaped artifacts. The
combination of smoothing and interpolation still produces circular interpolation artifacts in the case of a large radial
offset combined with a small number of original views, but these are less severe than when interpolation alone was
used. Overall, though, visually appealing reconstructions result for less challenging combinations of radial offset and
number of projections, including as few as 15 projections in the O cm offset case.

While Fig. 2 suggests that the algorithms described can produce visually satisfactory reconstructions from rela-
tively small numbers of projections, the most critical question is whether this can be achieved without hindering the
detection of the small perfusion defects that is usually the goal of cardiac SPECT imaging. To answer this question
we generated bullseye plots [17] from each set of reconstructions. If the reconstruction of the ventricle contained a
uniform distribution of activity, the bullseye plot would be uniform. But if the activity was nonuniform, for instance
if there was a perfusion defect having lower activity than surrounding areas, the appropriate sector of the dartboard
would appear darker than the surrounding area. The bullseye plots corresponding to reconstructions from few-view
sinograms that have been processed by the spline smoothing and interpolation techniques are shown in Fig. 3, along
with bullseye plots corresponding to 120-angle sinograms reconstructed without spline processing. Our phantom con-
tained a 1-cm perfusion defect insert, which produces a depression that is well resolved in many of the bullseye plots.

It is clear from these bullseye plots that the defect remains detectable for as few as 15 angles in the case of the O
cm offset, as few as 30 angles in the case of the 9 cm offset, and as few as 60 angles in the case of the 15 cm offset.
These findings correlate well with the visual appearances of the images in Fig. 2. The plots in which the defect is
not visible correspond to the images in which severe interpolation artifacts are evident. These results indicate that the
combined spline smoothing and interpolation approach has the potential to generate diagnostically useful images of
simple objects from as few as 15 projections.

Technical Objective 4

To test the performance of the algorithms in reconstructing the distribution of MIBI in a breast phantom, using a
miniature gamma camera already developed at the University of Chicago to acquire the projection images.

Owing to major personnel changes and redirection of research commitments, the development of nuclear medicine
instrumentation at the University of Chicago, and along with support for the improvement and operation of the minia-
ture gamma camera, has essentially ceased over the last two years. For this reason, it was not possible either to
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Figure 2: Reconstructions of a representative slice of a cardiac phantom image at three different radial offsets using
four different preprocessing approaches and 15, 30, 60, and 120 projections.
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Figure 3: Bullseye plots for the cardiac phantom placed at various radial offsets and for four different numbers of
projection angles. The reconstructions from 15, 30, and 60 angles used the nonparametric regression smoothing
technique followed by periodic spline interpolation to 120 views prior to reconstruction by ramp-filtered FBP. The
reconstructions from 120 angles simply entailed Hanning-filtered FBP.
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construct an anatomically realistic breast phantom or to perform imaging studies with the miniature gamma camera.
Nonetheless, we modified an existing phantom to provide a reasonable facsimile of the two-dimensional cross-section
of a more realistic three-dimensional breast phantom, and we were able to simulate the dedicated SPECT SMM imag-
ing geometry by operating a conventional three-headed SPECT system with the heads operating at the minimum
possible radius of rotation. Thus, despite the setback, all of the tasks associated with this technical objective were
pursued and achieved.

2.6 Task 6—Construction of a breast phantom

Construct a breast phantom capable of modeling the distribution of MIBI in normal and cancerous breasts as well as
mimicking the attenuation properties of breast tissue.

For the reasons discussed above, the resources did not exist to construct an anatomically realistic breast phantom.
Nonetheless, we assembled a reasonable facsimile of such by modifying a 14cm-diameter, 800 cc tub phantom to hold
fillable, spherical lesion inserts of various sizes. Because the algorithms under consideration are all two-dimensional,
we are primarily interested in having the projections of individual slices of the phantom be realistic. A two-dimensional
slice through any section of this phantom containing the lesion comprises a large outer circle containing a certain
concentration of activity and a smaller circular lesion containing a higher concentration of activity. This is precisely
the cross-section that would have been simulated in a phantom having a more realistic, breast-like outer shell. The
primary difference between the projections of lesion-containing slices in the cylindrical and breast-shaped phantoms
would be the differences in scatter contribution from nearby regions of the phantom. However, because the algorithms
developed are being evaluated primarily for their handling of sparsely sampled and noisy data, these differences in
scattering do not fundamentally affect the conclusions of the study.

2.7 Task 7—Imaging the phantom using a simulated SPECT SMM system

Using the University of Chicago miniature camera, acquire projection images of the phantom to be used as input to
the reconstruction algorithm.

The University of Chicago miniature camera project foundered before a camera of adequate field-of-view, stability,
and resolution for dedicated SPECT SMM was developed. Nonetheless, we carried on with this aim by operating a
standard SPECT system with the heads revolving at their minimum radius of rotation in order to simulate the potential
resolution improvements possible in a dedicated SPECT SMM geometry (recall that resolution generally worsens
with increasing distance from the collimator in a collimated system). Moreover, we expanded the scope of the task
somewhat by seeking to verify the hypothesis that a dedicated breast SPECT geometry would indeed be better for SMM
lesion detection than currently existing planar or conventional SPECT geometries. The experimental results of Wang
et al. [22] suggested that it would be, but we undertook to answer the question more definitively and quantitatively by
using the so-called ideal-observer framework to quantify the amount of information contained in the projections of a
breast phantom obtained using the three different geometries.

2.7.1 Methods—Comparison of imaging geometries

The ideal-observer framework [15] offers a way of assessing the amount of information the data from an imaging
device contain with regard to the performance of a specified task. For example, the simplest such task is the detection
of a signal of known strength, shape, and location in a specified background. In this case, the framework seeks to
quantify the degree to which an ideal observer—one who can use the information contained in the images to its fullest
extent—can reliably distinguish images containing the background alone from images containing the background and
the signal when both kinds of images are corrupted by noise, blurring, and other imperfections. For linear imaging
processes in which the noise in the output image is assumed to be additive, Gaussian, zero-mean, stationary, and
independent of the presence or absence of the signal, the ideal-observer framework allows us to characterize fully the
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[ Planar SNR [ Conventional SPECT SNR [ Dedicated SPECT SNR |
62 | 67 | 107 |

Table 1: Ideal-observer SNRs for detection of a 6:1, 1-cm lesion using planar, conventional SPECT, and dedicated
SPECT scintimammography.

quality of the imaging system data with respect to the performance of the specified signal-detection task by a single
number, the ideal-observer signal-to-noise ratio (SNR). Further details of its definition are given in the paper “Ideal-
observer analysis of lesion detectability in planar, conventional SPECT, and dedicated SPECT scintimammography
using effective multi-dimensional smoothing,” which is included as an appendix to this report.

The images whose information content we wish to measure are not reconstructed images but rather the raw pro-
jection images acquired by the various imaging systems, for these offer the purest measure of the quality of the data
acquired by the imaging system. The process of image reconstruction, while certainly helpful to human observers,
can never increase the ideal-observer SNR and generally reduces it. Using reconstructed images to compare imaging
geometries would thus conflate issues of data quality with issues of reconstruction algorithm accuracy. The methods
we used to obtain the data necessary for computing ideal-observer SNRs in these circumstances are detailed in the
attached paper “Ideal-observer analysis of lesion detectability in planar, conventional SPECT, and dedicated SPECT
scintimammography using effective multi-dimensional smoothing,”

2.7.2 Results—Comparison of imaging geometries

The ideal-observer SNRs for the detection of a 1-cm lesion with a 6:1 lesion-background concentration ratio are listed
in Table 1 for the three geometries. The SNR values given suggest that a dedicated SPECT geometry would lead to
improved detectability for clinically typical lesions over the planar and conventional SPECT geometries, especially
since in the presence of attenuation and scatter from the torso we would expect the difference between the dedicated
and conventional SPECT geometries to be even greater than it is here. The success of the dedicated geometry can
be attributed to the fact that it combines the advantages of the other two approaches: because of its small radius of
rotation, it offers good sensitivity and resolution comparable to that of a planar view acquired with the scintillation
camera flush against the phantom, while it offers the improved contrast offered by a tomographic system’s ability to
separate lesion activity from overlying and underlying activity.

2.8 Task 8—Evaluation of approaches applied to acquired data
Compare the reconstructed distributions to the known distributions of MIBI in the phantom.

Having established the superiority of the dedicated SPECT SMM imaging to other contenders, we turned to the
application and evaluation of our developed algorithms to few-view dedicated SPECT SMM data. Two families of
algorithms were considered: those based on a combination of Fourier-domain apodization for projection smooth-
ing followed by ZP interpolation of additional projections, and those based on the Bayesian, spline-based projection
smoothing followed by periodic spline interpolation of additional projections. The approaches were first used to re-
construct images from varying numbers of projections in order to assess the visual quality of the resulting images. The
quantitative accuracy of the methods were then compared by computing resolution-variance curves for reconstructions
of a numerical breast phantom.

2.8.1 Methods—Reconstructing images for few-view SPECT SMM

We imaged the cylindrical breast phantom described under task 6 containing a 1-cm outer diameter spherical lesion
insert. This lesion size is representative of the smallest currently detected in SMM. We determined the concentration
of Tc-99m to place in the background by assuming that 1% of a typical 25 mCi clinical dose of Tc-99m-sestamibi is
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taken up by the myocardium. Using the volume of the myocardium in the Data Spectrum Corporation cardiac insert
as a guide, along with the assumption that soft tissue will have a 1:15 concentration relative to the myocardium [22]
allowed us to determine the expected concentration of activity in healthy breast tissue. We wished to simulate imaging
for 30 minutes. Because this data was acquired in the context of another study requiring multiple realizations of the
acquisitions, the calculated background concentration was scaled up by a factor of 30, and imaging time was reduced
to one minute, thus maintaining clinically realistic count levels while accelerating the imaging process. Again, for
reasons related to their use in another study, projection data were acquired first of the cylinder alone, without the
lesion insert, and then of the lesion in a cold background. The lesion was filled with a relatively high concentration
of activity and imaged for 30 minutes in order to acquire essentially noise-free projections. Under the verifiable
assumption that we were working in the low-contrast limit, the lesion projections were then scaled down to those of
a 6:1 lesion and added to the projections of the background. The 6:1 lesion-to-background ratio was chosen based
on studies performed of actual healthy breast and malignant tissue after excisional biopsies following injection of
Tc-99m-sestamibi, which found that typical in vivo tumor-background concentration ratios of Tc-99m-sestamibi are
5.641+3.06 [23].

The projection images were acquired by placing the phantom at the center of rotation of a Picker XP2000 two-
headed SPECT system with the heads rotating at the minimum radius of rotation (9.0 cm). In this configuration the
heads were within 2.0 cm of the walls of the phantom. The breast phantom was not attached to an anthropomorphic
torso phantom because Wang et al. [22] showed that with proper shielding the contribution of scatter from the torso
can be made negligible. We acquired 120 projections over 360° with each head acquiring to a 128x128 matrix (pixel
size=4.67 mm). We used a low-energy, ultra-high resolution collimator.

The sinogram corresponding to the slice passing through the center of the lesion was extracted from the dataset.
It was subsampled to generate sinograms of 15, 30, and 60 projections, as well as the complete 120-projection one.
Each of these four sinograms was then reconstructed by use of four different methods:

1. Fourier-domain Hanning filtration of the projections (cutoff = 0.8 of Nyquist) followed by reconstruction from
available views by FBP using an unapodized ramp filter.

2. Fourier-domain Hanning filtration of the projections (cutoff = 0.8), interpolation to 120 projections by use of ZP
interpolation, and reconstruction by FBP using an unapodized ramp filter.

3. Spline-based, roughness-penalized Poisson likelihood smoothing of the projections, with a square root link
function and the smoothing parameter A chosen to give comparable smoothing to the Hanning filtration above,
followed by reconstruction from available views by FBP using an unapodized ramp filter.

4. Spline-based, roughness-penalized Poisson likelihood smoothing of the projections, with a square root link
function and the smoothing parameter A chosen to give comparable smoothing to the Hanning filtration above,
interpolation to 120 projections by use of ZP interpolation, and reconstruction by FBP using an unapodized
ramp filter.

Naturally, no interpolation to 120 projections was performed for the sinograms already containing 120 projections.

2.8.2 Results—Reconstructing images for few-view SPECT SMM

The results of these reconstructions are shown in Fig. 4. In general, the star artifacts typical of few-view FBP recon-
structions are evident in the reconstructions from 15 and 30 views, as is their suppression when these sinograms are
interpolated to 120 views. Some mild interpolation artifacts are evident in the interpolated reconstructions from 15
views, but these do not obscure the lesion. No striking visual differences exist between the images reconstructed by
use of the Fourier-based and spline-based approaches, but none were expected. These images are shown simply to
demonstrate that both approaches produce reasonably satisfying images with suppressed noise and star artifacts with-
out introducing significant new artifacts. A more quantitative comparison between the approaches will be presented in
the next section.
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Figure 4: Reconstructions of a physical breast phantom containing a 6:1, 1-cm lesion imaged in a simulated dedicated
SPECT SMM geometry.
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2.8.3 Methods—Resolution-variance tradeoffs for few-view SPECT SMM

To characterize more quantitatively the differences between the Fourier-based and spline-based approaches to few-
view SPECT SMM, we performed resolution-variance studies similar to those reported in the attached paper entitled,
“Nonparametric regression sinogram smoothing using a roughness-penalized Poisson likelihood objective function.”
For this study, we employed a numerical phantom comprising a simple circle of uniform activity 1.0 specified on a
128x 128 grid. Sinograms of 128 bins and 120 angles were generated, using strip integrals the same width as the
bins, which in turn were the same size as the pixels. Similar sinograms of the same phantom containing an impulse of
magnitude 0.01 in one pixel were also generated. The mean number of counts per bin was approximately 6-10. Each
of these sinograms was subsampled to generate sinograms of 15, 30, and 60 projections, in addition to the original
120-projection sinograms.

To characterize resolution properties, the local impulse response (LIR, which is a generalization of the point spread
function concept for images with potentially nonuniform resolution) for the pixel to which the impulse was added was
computed for the four smoothing and interpolation methods enumerated in the previous sections. This was done for
each number of starting angles: 15, 30, 60, and 120. The locally linear approximation discussed in the attached paper
“Nonparametric regression sinogram smoothing using a roughness-penalized Poisson likelihood objective function,”
allowed the LIR for each method to be computed from the reconstructions of noiseless projections of the phantom
with and without the impulse. The average FWHMs of each resulting LIR was computed by calculating the average
diameter of the half-maximum contour of the LIR.

To characterize noise properties, 800 Poison realizations of the impulse-free projections were generated and re-
constructed by each of the methods for each number of starting projections. The empirical standard deviation at the
point of the impulse was computed for each method and number of starting projections.

2.8.4 Results—Resolution-variance tradeoffs for few-view SPECT SMM

The resulting resolution variance-curves are shown in Fig. 5. Two plots are shown there, one for the approaches in
which smoothing alone is performed followed by reconstruction from the available number of projections, the other
in which additional projections are interpolated after smoothing. Note that the ranges of the axes are not the same in
both plots The solid lines in the center of each band represent the curves themselves and the shaded bands represent
the 95% confidence intervals.

It can be seen that the spline-based approaches, both with and without interpolation of additional views, gener-
ally retain their superiority over the Fourier-based approaches in the few-view ECT context. A few other features
of the curves bear mention. First, for all approaches, reconstructions from a smaller number of projections always
have higher noise levels for a given resolution than reconstructions from a larger number of projections. This arises,
of course, because fewer counts are contributing to the reconstructed image when fewer views are used for recon-
struction. In fact, the relative noise levels are, as expected, more or less inversely proportional to the square root of
the number of projections used. Second, the differences between the approaches are generally more apparent in the
lower right portion of the plots than in the upper left portion. As in the paper “Nonparametric regression sinogram
smoothing using a roughness-penalized Poisson likelihood objective function,” this is because the upper left region
of the plots correspond to relatively small values of the smoothing parameter and thus to images in which the two
smoothing constraints have had little influence. Finally, and again not surprisingly, it should be noted that comparing
corresponding curves between the two plots indicates that the projection interpolation process compromises image
resolution somewhat, especially for small numbers of starting projections such as 15.

Technical Objective S

To test the performance of the algorithms in a clinical setting, with the cooperation of Dr. Patrick Peller of Lutheran
General Hospital in Chicago, who has proposed to develop a dedicated breast imaging miniature gamma camera in
collaboration with the University of Chicago.
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Figure 5: Resolution-variance curves for the Fourier- and spline-based projection smoothing and interpolation ap-

proaches in a breast-like phantom.
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2.9 Tasks 9 and 10—Application of approaches to clinical SPECT SMM data

Obtain projections using the purpose-built breast mini-camera in a clinical situation. Reconstruct the distributions of
MIBI using the few-view algorithms.

- Evaluate the performance of the algorithms by comparing the diagnoses obtained from the receiver operating
characteristic (ROC) analysis to determine the sensitivity and specificity of the technique.

As discussed in the introduction to this body section of the report, it was not possible to accomplish technical
objective 5, and its subordinate tasks 9 and 10, because the clinical SPECT SMM system referred to was never
developed. The development of the system was a project entirely independent of the work being reported on here, and
it simply did not come to fruition due to lack of funding and personnel resources. In the future, it may be possible
to evaluate the techniques developed in this work by seeking collaborations with groups that are currently developing
miniature cameras specifically for the SMM application. These include a group at Lawrence Berkeley National Lab,
lead by Bill Moses, and a group at the University of Rome, lead by R. Pani. However, neither of these systems is
being developed with an explicitly tomographic capability, and thus a dedicated SPECT SMM system may still lie a
few years in the future.
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Key research accomplishments

We have examined the use of the algebraic reconstruction technique algorithm for reconstruction of single pho-
ton emission computed tomography (SPECT) scintimammography (SMM) from a smaller number of projections
than is usually used and found it to yield sufficiently poor results to preclude further examination of ART-type
algorithms.

We have analyzed the angular sampling requirements for the sinogram of a typical SPECT SMM slice and found
that it is often the case that the Nyquist condition is satisfied by a smaller number of views than is needed by
FBP to produce an essentially artifact-free reconstruction.

From this analysis we concluded that it might be possible to interpolate additional views in a few-view SPECT
SMM sinogram, thereby eliminating the source of star artifacts in few-view FBP reconstruction, without intro-
ducing additional artifacts or inaccuracies.

We have developed a Fourier-based interpolation technique for increasing the number of projection views in
few-view tomography with the aim of eliminating FBP’s few-view artifacts.

We have developed a spline-based interpolation technique for increasing the number of projection views in
few-view tomography with the aim of eliminating FBP’s few-view artifacts.

We have compared the accuracy of Fourier, spline, and linear interpolation for increasing the number of projec-
tion views in few-view tomography and found spline interpolation to be, in general, the most accurate.

We have analyzed the noise properties of Fourier-based, spline-based, and linear interpolation, and found that
Fourier-based interpolation produces curves with the most favorably stationary noise properties, closely fol-
lowed by spline-based interpolation.

As an alternative to reconstruction by FBP, we have investigated the use of direct Fourier reconstruction, in
which ZP interpolation is used to increase the density of polar samples in the Fourier transform space of the
object being imaged, after which linear interpolation is used to estimate Cartesian samples for reconstruction by
the 2D FFT. We have found this approach to be both accurate and computationally efficient.

We have developed a novel Bayesian projection-smoothing technique based on roughness-penalized nonpara-
metric regression using an explicit Poisson noise model.

We have compared this novel projection-smoothing technique to conventional Fourier-domain apodization win-
dow techniques by computing resolution-variance curves and found the novel approach to be superior in a
statistically significant way.

We have found that the nonuniform resolution induced in the images by use of the novel projection smoothing
technique can be controlled by adjusting the so-called link function of the model to yield the favorable outcomes
of having better resolution in higher-count areas than in lower-count areas or of having essentially uniform
resolution. This is in contrast to fully iterative Bayesian approaches, in which it is quite difficult to achieve
uniform resolution.

As a second alternative to FBP, for use when smoothing splines are fit to the projections, we have investigated a
direct-spline reconstruction technique in which the reconstructed image is expressed in terms of the coefficients
of the splines. The technique is found to yield image resolution superior to that of FBP, but at considerable
computational cost.

We have determined, through use of the ideal-observer framework, that the dedicated breast SPECT geometry
is superior to the planar or conventional SPECT geometries for scintimammography.
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e We have compared, using real breast phantom data, the algorithms based on the use of spline-based projection
smoothing and interpolation to those based on Fourier-domain techniques. We found quantitative evidence of
the superiority of the spline-based approach.

e Having found the algorithm based on the use of spline-based projection smoothing and interpolation to be
superior to that based on Fourier-domain techniques, we determined that it can indeed preserve the diagnostic
information that is present in reconstructions from standard numbers of projections when reconstructing from
as few as 15 views for relatively simple objects such as breasts.
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Conclusions

The broad objective of the proposed research was to develop, implement, and evaluate methods for the reconstruction
of dedicated single-photon emission computed tomography (SPECT) scintimammography (SMM) images from a
relatively small number of projection views. The research was carried out from a theoretical and abstract point of
view, because no dedicated SPECT SMM system yet exists, and, indeed, one of the more significant conclusions of
the work pertains to the more fundamental question of whether dedicated SPECT SMM is worth pursuing at all.

Through application of so-called “ideal observer” analysis to real data acquired using a simulated breast phantom,
it was found that a dedicated SPECT SMM geometry should improve the detectability of focal lesions relative to
planar imaging and conventional SPECT SMM imaging. Planar imaging is the current clinical standard for SMM
imaging and conventional SPECT SMM imaging has been employed in occasional research studies without great
success. The success of the dedicated SPECT geometry was attributed to the fact that it combines the advantages of
the other two approaches: because of its small radius of rotation, it offers sensitivity and resolution comparable to that
of planar imaging with the gamma camera flush against the breast, while it also offers the improved contrast offered
by a tomographic system’s ability to separate lesion activity from overlying and underlying activity. Of course, there
are numerous issues that would have to be addressed before more final conclusions about the viability of dedicated
breast SPECT systems could be drawn. These include technical questions about whether a system could be designed
to image sufficiently close to the chest wall as well as practical questions about whether such a system would gain
sufficient use to justify the purchase of so specialized a nuclear medicine system. The gamma cameras in the current
planar SMM studies can be used for a wide range of other studies, and even the dedicated miniature breast gamma
cameras currently under development are likely to be sufficiently flexible to permit application to other tasks, such
as thyroid imaging. Depending on the specifics of its design, a dedicated SPECT SMM system would likely find
few alternative applications. Nonetheless, as the first miniature dedicated miniature breast gamma cameras come to
fruition, it will be worthwhile to study their performance in a tomographic geometry and thereby to continue refining
the answer to this question.

Another practical issue that might plague dedicated SPECT SMM is the question of whether the imaging time
needed to acquire the standard number of tomographic views and counts would be excessive, leading to motion artifacts
and decreased throughput. In this vein, the driving motivation of this research was to develop techniques for the
reconstruction of dedicated SPECT SMM images from a smaller number of views than is usually used for tomographic
reconstruction. The research again began by addressing the more fundamental question of whether such few-view
reconstruction is possible or advisable in this situation. Analysis of angular sampling requirements for sinograms of
breast-like phantoms suggested that the Nyquist sampling condition could be satisfied by a relatively small number of
views in SPECT SMM and thus that reconstruction should be possible from small numbers of views without significant
angular aliasing artifacts. This should not, of course, be taken to mean that few-view acquisitions are the only or even
necessarily the best means of reducing imaging time in dedicated SPECT SMM. The same time savings could, of
course, be achieved by acquiring fewer counts at each of a standard number of views. The question of which of these
approaches is best was not a subject of this investigation, although interestingly, the Bayesian projection-smoothing
approach developed in the course of this research could be of use for smoothing the noisy, low-count projections
acquired in the latter approach.

The analysis of angular sampling requirements in SPECT SMM, coupled with an analysis of the artifacts that
arise in few-view filtered backprojection (FBP) reconstruction, lead to the development of a sinogram preprocessing
approach for few-view SPECT SMM reconstruction, in which each measured projection is first smoothed by use
of a spline-based, Bayesian, nonparametric regression technique that explicitly models the Poisson statistics of the
measurement data. Additional projections are then interpolated from the measured ones in the hopes of satisfying
FBP’s own assumptions about the completeness of the measured data. Reconstruction then proceeds by use of FBP.
The Bayesian projection-smoothing approach has a number of appealing features: it leads to statistically significant
resolution/noise advantages over Fourier-domain apodization windows, it captures some of the statistical benefits of
a fully iterative reconstruction algorithm, such as MLEM, at a fraction of the computational cost, and it also can also
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be used to produce images having uniform and isotropic resolution more naturally than when making use of fully
iterative algorithms. Significantly, this Bayesian projection smoothing approach could be applied quite generally in
emission tomography and is not tied specifically to the few-view application or to SPECT SMM. The investigation of
interpolation methods for generating additional views in a few-view sinogram also produced insights and methods of
broad significance, as it lead to a detailed investigation of the noise and accuracy properties of various interpolation
methods. Overall, spline-based interpolation was found to perform best in the SPECT SMM context. The application
of the spline-based smoothing and interpolation approaches in concert to few-view SPECT SMM data was found
to yield visually satisfying reconstructions from as few as 15 projection views, although in practice 30 may be a
preferable lower limit. That such reconstructions still retain diagnostically important information was confirmed by
imaging a cardiac phantom containing a defect insert and applying to the reconstructed data standard analysis tools
that are very sensitive to the presence of such defects in reconstructed images.

So what?

The value of the accomplished research lies in three principal elements. First, it has established that a dedicated breast
SPECT geometry for SMM imaging should lead to enhanced lesion detectability relative to clinically standard planar
imaging and conventional SPECT imaging. This suggests that the development of dedicated SPECT SMM systems
should be considered in the future as they may lead to improvements in the sensitivity of SMM imaging and thereby
make it more viable as a follow-up test to mammography that attempts that attempts to differentiate benign and malig-
nant lesions noninvasively. For dedicated SPECT SMM to be a truly viable follow-up to mammography, however, the
test should be relatively comfortable and its throughput relatively high. In this vein, the second significant element of
the research was its finding that it should, in principle, be possible to reconstruct dedicated SPECT SMM images from
a smaller number of views than is usually used, without increasing the time spent acquiring each such view, and thus
to keep imaging time relatively short. The final significant aspect of the research was the development of methods for
performing this kind of few-view reconstruction efficiently and accurately. In addition, some of the techniques and
insights developed here will likely have resonance beyond the SPECT SMM and few-view reconstruction problems
and find application to other problems in emission tomography and in medical imaging in general.
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Mathematical equivalence of zero-padding interpolation and
circular sampling theorem interpolation with implications
for direct Fourier image reconstruction

P. J. La Riviére and X. Pan
Department of Radiology, The University of Chicago, Chicago, IL, 60637

ABSTRACT

The speed and accuracy of Direct Fourier image reconstruction methods have long been hampered by the need to interpolate
between the polar grid of Fourier data that is obtained from the measured projection data and the Cartesian grid of Fourier data
that is needed to recover an image using the 2D FFT. Fast but crude interpolation schemes such as bilinear interpolation often
lead to unacceptable image artifacts, while more sophisticated but computationally intense techniques such as circular
sampling theorem (CST) interpolation negate the speed advantages afforded by the use of the 2D FFT. One technique that has
been found to yield high-quality images without much computational penalty is a hybrid one in which zero-padding
interpolation is first used to increase the density of samples on the polar grid after which bilinear interpolation onto the
Cartesian grid is performed. In this work, we attempt to account for the success of the approach relative to the CST approach
in three ways. First and most importantly, we establish that zero-padding interpolation of periodic functions that are sampled
in accordance with the Nyquist criterion—precisely the sort of function encountered in the angular dimension of the polar
grid—is exact and equivalent to circular sampling theorem interpolation. Second, we point out that both approaches make
comparable approximations in interpolating in the radial direction. Finally, we indicate that the error introduced by the
bilinear interpolation step in the zero-padding approach can be minimized by choosing sufficiently large zero-padding factors.
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1. INTRODUCTION

The direct Fourier approach to tomographic image reconstruction has long had the potential to be among the most
computationally efficient of image reconstruction algorithms because it harnesses the speed of the inverse 2D Fast Fourier
Transform (FFT). The inverse 2D FFT is used to recover an image from samples of its Fourier transform that are obtained by
Fourier transforming the projections of the object slice being imaged. As is widely known, the chief impediment to effective
direct Fourier algorithms is the fact that the transformed projection data yields samples of the image transform that lie on a
polar grid, while the inverse 2D FFT algorithm requires samples to lie on a Cartesian grid. The necessary interpolation
between the two grids generally compromises either image quality, when a fast but crude interpolation is performed, or
processing time, when a more sophisticated but computationally intense interpolation is performed. For instance, the
simplest of interpolation schemes—nearest neighbor or bilinear interpolation—can lead to artifacts in the reconstructed
images [1], while more accurate techniques, such as the gridding approaches of O’Sullivan [2] and Jackson et al. [3], involve
more expensive convolutions over larger neighborhoods.

Stark et al. [4,5] have examined an interpolation scheme that is essentially exact when the polar samples of the transform
satisfy certain conditions. They use truncated Whittaker-Shannon sinc interpolation in the radial direction and circular
sampling theorem (CST) interpolation in the angular direction. CST interpolation is an exact interpolation method that
follows from Whittaker-Shannon interpolation when the function being interpolated is periodic and sampled in accordance
with the Nyquist criterion. Unfortunately, CST interpolation also involves a very expensive convolution, a processing burden
Stark et al. attempted to mitigate by truncating the CST series, with a consequent tradeoff in accuracy.

At least one interpolation approach has been developed that generates images of comparable quality to CST and other
convolution-based techniques with none of their computational drawbacks. It is a hybrid method in which zero-padding
interpolation is first used to increase the density of polar samples in both the radial and angular directions, after which bilinear
interpolation onto the Cartesian grid is performed. Zero-padding interpolation works by extending the discrete Fourier
transform (DFT) of a finite sequence with zeroes and then performing an inverse DFT, yielding a sequence with additional,
interpolated samples between the measured values of the original sequence. Because it exploits the FFT algorithm, zero-
padding interpolation is very computationally efficient. The approach was studied explicitly and compared to CST-based
techniques by Kak and Pan in the context of ultrasound diffraction tomography, where a similar Fourier-space interpolation
problem arises [6].




In this work, we account for the surprising success of this hybrid approach in three ways. First, we establish that for the
sort of periodic, bandlimited functions encountered in the angular dimension of the polar grid, zero-padding interpolation is
equivalent to CST interpolation insofar as the values zero-padding interpolation generates on the denser polar grid it produces
match the values CST interpolation would produce at those points. Of course, CST interpolation is not constrained to
interpolate onto a polar grid of increased angular density—it can interpolate at arbitrary angular points—and thus avoids the
additional linear interpolation needed in the zero-padding approach. However, we point out that the error arising from this last
interpolation can be made negligibly small if the polar grid is made sufficiently dense through zero-padding. Finally, we
indicate that both the zero-padding and CST approaches make comparable approximations in interpolating in the radial
direction of the polar grid.

We begin in part 2 by reviewing the basic theory of CST and zero-padding interpolation and then proving their equivalence
for one-dimensional, periodic functions sampled in accordance with the Nyquist criterion. In part 3, we introduce the specific
interpolation problem encountered in direct Fourier image reconstruction and discuss the solution offered by CST and zero-
padding interpolation, as well as simple bilinear interpolation. In part 4, we present the results of using these three methods
to reconstruct images of numerical phantoms, both ideal and contaminated by Poisson noise.

2. THEORY

In this section we focus on the interpolation of one-dimensional, bandlimited, periodic functions of period 2, introducing
the CST and zero-padding approaches and then establishing their agreement on the grid of zero-padding interpolated values.
The decision to focus on functions of period 27 simplifies notation and reflects the fact that this is the period of the angular
samples encountered in direct Fourier reconstruction, but all of the results derived apply equally well to functions with other
periods.

2.1. Circular Sampling Theorem

Circular Sampling Theorem interpolation is a special case of exact Whittaker-Shannon interpolation that applies to periodic
functions sampled in accordance with the Nyquist criterion [7,8]. Consider a function x(8) that is periodic with period 27
and bandlimited to frequency K (i.e., the coefficients of the function’s Fourier series expansion satisfy a, =0 for [k|> K). If
there are N equidistant samples of x(8), i.e., x(27rn/N), n=0,...,N—1,and Nis odd and 22K +1, the circular sampling
theorem (CST) states that the value of x(8) may be determined exactly at arbitrary 8 using
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Similarly, if N is even and > 2K, the value of x(8) may be determined exactly at arbitrary 8 using
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It is well known that extending the discrete Fourier Transform (DFT) of a finite sequence with zeroes and performing an
inverse DFT increases the density of samples in the conjugate domain, thereby yielding interpolated values at regular intervals
between the sequence’s measured points. Fraser has given a thorough and enlightening discussion of the process that
highlights a few of its more subtle points [9]. It is not widely known, however, that interpolation by zero-padding the DFT is
equivalent to CST interpolation (and thus to exact Whittaker-Shannon interpolation) when the sequence in question represents
samples of a periodic, bandlimited function sampled in accordance with the Nyquist criterion. To establish this equivalence,
we begin with a rigorous definition of the zero-padding process, taking care to distinguish between the cases when the number
of samples N is even or odd. Following Fraser, we define a superscript 7, such that N =N (N even) and N =N-1 (N
odd). Assume again that we have a function x(6) that is periodic with period 27 and bandlimited to frequency K , and of
which we have N equidistant samples, x(27n/N), n=0,...,N -1, where N 22K. The DFT of this sequence is given by

2.2. Zero-padding interpolation
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where j = V=1, Zero-padding involves the creation of a new sequence d,., having L= P-N terms, where P is an Integer.
Taking the inverse DFT of the new sequence yields a2 more densely sampled version of the original sequence. We need only
explicitly build the first half of the DFT sequence d,., for so long as x is a real function we can exploit the conjugate
symmetry of the DFT to construct the second half. The first half is created as follows:

¢  K=012,..,N /2]

0.5¢, k’=N"/2 (Neven)
d, = @
c k'=N"/2 (Nodd)

I

0 k"=N"/2+1,N"/2+2,...,L" /2,

where L~ is defined in the same way as N~ above. The second half of the sequence d,.may then be constructed from the first
" half by use of

d,_.=d, k=12,.,L/2, (5)

where * denotes complex conjugation. The factor of 1/2 that appears in Eq. (4) in front of c,, when N is even and the
implicit insertion of this term’s complex conjugate in the second half of the sequence are often omitted in hasty
implementations of zero-padding interpolation in which sequences of zeroes are simply shoehorned into the middle of the DFT
sequence. Fraser discusses the mathematical reason for these nuances, which will prove to be important in establishing the
mathematical equivalence of CST and zero-padding for the N even case. Finally then, taking the inverse DFT of the sequence
d

&
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yields the more densely sampled sequence x(27rl/L), [=0,...,.L-1.

2.3. Equivalence of Zero-Padding and CST Interpolation

The most obvious mechanical difference between CST interpolation and zero-padding interpolation is that the former can be
used to interpolate a value at a single, arbitrary point 8 while the latter necessarily generates simultaneously numerous
interpolated points, which lie on a regular grid whose spacing is determined by the zero-padding factor P. However, we will
now demonstrate that the values determined by zero-padding on that regular grid match exactly the values that would be
obtained from CST interpolation at those points.

We consider the task of using zero-padding to interpolate from N samples, x(27rn/N), n=0,...,N—1, to L samples,
x(27rl/N), 1=0,...,L—1,where L=P-N as before. Consider first the case where N is odd. We can divide the sum in Eq.
(6) into three segments:
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Substituting for the d,. in terms of the c,. as specified by Eq. (4), we have
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where the second sum has disappeared because the coefficients d,. are all O for k£’ in this range. Substituting the expression
for ¢, given by Eq. (3) yields
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Switching the order of the summations and making the substitution k” =k’ — L in the second term gives
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The expression exp(j2nl(k”+ L)/ L) in the second term in brackets is simply equal to exp( j2mlk” I L), so the two terms
in brackets may be combined to give
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At this point we use an identity, which holds for N odd, also invoked by Stark in his derivation of the CST [7]:
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Using this in Eq. (11) yields
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We see that the values x(2 nl/N ) obtained using zero-padding are exactly those that would be obtained from Eq. (1) for CST

interpolation with N odd and 6 =2#l/L.
When N is even, the derivation proceeds slightly differently. We now divide the sum in Eq. (6) into five segments:
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Substituting for the d,. in terms of the c,. as specified by Eq. (4), we have
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Now switching the order of the summations, making the substitution k” =k’ — L in the fourth term, and reordering the terms
for later convenience allows us to write
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The factor exp(j2zl(k”+ L)/ L) in the second sum is simply equal to exp(j2zlk”/ L), so the first two sums in brackets
may be combined, as can the third and fourth terms, yielding
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We now invoke an identity that holds for N even and whose derivation is similar to that of Eq. (12) [8]:
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Stark and Wengrovitz point out that the second term contributes 0 to x(27l/N ), so the final expression is given by
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As in the case of N odd, we see that the values x(27rl/N) obtained using zero-padding are exactly those that would be
obtained from Eq. (2) for CST interpolation with N even and 8 =27rl/L.

3. METHODS

3.1. Direct Fourier Image Reconstruction

The goal of two-dimensional tomographic image reconstruction is to estimate a two-dimensional distribution f(x,y) of
some object property, such as attenuation coefficient in computed tomography or the concentration of a radionuclide in
emission tomography, from a set of one-dimensional projections of the distribution acquired at a number of different
projection angles. Formally, the projection at projection angle ¢ is given by

= [f(n.&)dn, - | (22)

where f(7,&) represents the distribution in a coordinate system (77, £) rotated from the coordinate system (x,y) by an angle
¢, and where L denotes the path of the line of integration. If we denote by P, (u) the one-dimensional Fourier transform of
p,(&)with respect to £and by F(p, ) the two-dimensional Fourier transform of f(x,y) in polar coordinates, the central
slice theorem states that the two are related through

P,(p)=F(p.9) p=20, O<gp<2m. (23)

Thus the FT of a projection at projection angle ¢ yields information about the 2D FT of the object along a spoke through
the origin of Fourier space oriented at angle ¢.

In practice, the projections are measured at a finite number N of angles ¢, =na/N, n=0,...,N—1, which we assume
to be equally spaced over 180°, and each projection, assumed to be of length 2A, is sampled at a finite number M of
projections bins &, =2mA/M,m=—-(M-1)/2,...,(M-1)/2. (For notational convenience, we take M to be odd
throughout.) When transformed, these projections thus yield a finite set of samples of F (p, (o), which we denote F (pm,(pn),
Pn=m2A, m=0,..,(M-1)/2 and ¢, =nm/N, n=0,...,2N—1. Note that the number of angular samples on the
polar grid is 2N and that the samples span 27 . This reflects the fact that a projection view at angle ¢ gives two samples of

F(p, ), one at @ and one at ¢+ 7. Specifically, the polar samples in the range [0, 7] correspond to the positive frequency



values of the transformed projections, while the polar samples in the range [7,27] can be obtained from the negative
frequency values of these transformed projections.

The true challenge in direct Fourier reconstruction is the interpolation from the polar grid above to a Cartesian grid
F(u,,v;). The size of the interpolated Cartesian grid should be chosen such that none of its points lie bcyond the available
polar samples thus it should be the largest square that fits within a circle of radius (M —1)/4A. However, in order to ensure
that the reconstructed image has the proper scale, this interpolated Cartesian grid should be padded with zeroes to length
(M —1)/ A prior to performing the inverse 2D FFT. Having established the size of the Cartesian grid in frequency-space
units, it must be subdivided into pixels in a way that eliminates or minimizes aliasing in the reconstructed image. To do so,
the grid spacing must be no larger than 1/2A and preferably an integer divisor smaller.

3.2. Interpolation Between Coordinate Systems

The interpolation of the Cartesian grid values is generally accomplished by scanning the grid point by point, calculating:
the polar coordinate corresponding to each point and using known polar samples to interpolate a value at that polar point.
This last step can be accomplished in many ways. Most crudely, the point could be simply be assigned the value of the
nearest polar sample this is known as nearest-neighbor interpolation. Slightly more accurately, bilinear interpolation could
be performed using the four polar samples surrounding the point of interest.

Stark’s approach is to perform CST interpolation in the angular direction and truncated Whlttaker-Shannon sinc
interpolation in the radial direction, obtaining an estimate F(p ¢) of F(p,p) at any point (p, @) corresponding to a
Cartesian grid point from the measured samples F(p,,, ¢,) using

|1 nn
A M2 WA N SIH[E(N_I)(‘P_‘A?)]
Flp,p)= MH%:M "z:(; F(ﬂ’_}_\/_) smc[ZA(p - m/2A)] . Sin[l((p i _@ﬂ . 24)
2 N

The values of F(m/2A,nm/N) for negative m can be determined from the known values for positive m using the
relationship F(—p, )= F'(p, @+ 7). This interpolation strategy is valid because the polar samples satisfy two crucial
assumptions. First, because the projections are spatially compact, the radial functions on the polar grid should in principle be
able to be reconstructed by infinite sinc interpolation from the samples with spacing Ap =1/2A. The necessary truncation of
the series is expected to introduce edge effects leading to high-frequency artifacts in the reconstructed image. Second, the
angular functions, while clearly periodic with period 27, are also expected to be sufficiently bandlimited that they can be
sampled in accordance with the Nyquist criterion using a reasonable number of views [10], and can thus be exactly
interpolated using the CST.

The reasons that validate Stark’s strategy also justify the use of zero-padding interpolation to increase the density of polar
samples prior to bilinear interpolation. Because the projections are spatially limited, they can be extended with zeroes to a
factor of P times their original lengths prior to Fourier transforming. After transforming, the radial samples of the Fourier
transform are P times as dense as previously. At this point, the angular samples at each fixed radial coordinate are subject to a
one-dimensional Fourier transform. Because the functions are expected to be bandiimited in the angular direction, each
resulting DFT sequence can be zero-padded as discussed in Sect. 2.2 to Q times its original length. Upon performing the
inverse DFT, the angular samples of the FT are Q times as dense as previously. At this point interpolation proceeds as in the-
simple bilinear interpolation scheme discussed above: each Cartesian point is transformed to polar coordinates, and bilinear
interpolation is performed among the four surrounding polar points.

3.3. Phantom studies

To compare these three Fourier-domain interpolation approaches, which we will refer to as the bilinear, zero-padding, and
CST approaches, we first performed reconstructions of a Shepp-Logan head phantom (see Fig. 1a) in the absence of noise.
The projection data consisted of 64 views spanning 180° and each containing 129 projection bins. We reconstructed a
129x129 pixel image (the choice of an odd number of bins and image pixels simplifies the implementation of the direct
Fourier algorithms but is by no means necessary). In order to minimize aliasing artifacts, we interpolated onto a Cartesian
grid of 257x257 pixels, having the same frequency-space extent as the transforms of the projections yet sampled twice as
densely. The central 129x129 pixels of the inverse transform of this array then corresponded to the desired reconstructed
image. When zero-padding, we applied zero-padding factors of 2 in both the angular and radial directions, thereby increasing
the density of polar samples by a factor of 4.

For each reconstructed image we calculated the normalized root mean square distance of the reconstruction from the true
phantom image. This accuracy measure is defined as
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where 1, and r; represent the pixel values of the pixel in the ith row and jth column of the true and reconstructed R x R
images, respectlvely, and f denotes the average pixel value in the true image.

To examine the behavior of the algorithms in the face of noise we generated 500 sets of projections of a numerical torso
phantom (see Fig. 1b) contaminated with Poisson noise (assuming 100,000 total counts in the sinogram). Each sinogram
consisted of 64 projection angles of 65 projection bins spanning 180°. We reconstructed onto a 65x65 pixel array by inverting
a Cartesian grid of 129x129 pixels having the same frequency-space extent as the transforms of the projections but sampled
twice as densely. For each interpolation techmque we calculated the mean of the 500 reconstructions, and the normalized RMS
distance of this mean image from the true image. We also computed empirical variance images v, for each technique using
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where r ) is the value of the jth pixel in the kth reconstruction and N is the total number of image realizations.

4. RESULTS AND DISCUSSION

The results of the noise-free reconstructions of the Shepp-Logan head phantom are shown in Fig. 2. Profiles of the row
passing through the three small structures near the bottom of the image are also included. The normalized RMS distances and
processing times for the three approaches are listed in Table 1. All three algorithms were implemented in Interactive Data
Language, though the interpolation step of the circular sampling theorem interpolation was performed by a C subroutine. All
computing was performed on an IBM RS6000-based workstation.

Table 1. Normalized RMS distances and processing times for reconstruction of the noise-free Shepp-Logan phantom.

Interpolation Method -Normalized RMS Distance Processing Time
Bilinear 0.268 7.28 s
Zero-Padding 0.126 853s

CST 0.148 2511.41 s

It is apparent, both qualitatively and quantitatively, that zero-padding interpolation produces images of comparable or
superior quality to CST at a fraction of the computational cost. To be fair, CST can be made to run more rapidly by
constraining the convolutions to smaller neighborhoods around the points of interest, but this comes at some cost in
accuracy, and computing time still would barely approach that of the zero-padding approach, which benefits from the famed
speed of the FFT. The excellent performance of the zero-padding approach relative to CST is explained in large part by their
equivalent exactness in performing the angular interpolation and their equivalent approximations in performing the radial
interpolation. So long as the polar samples satisfy periodicity and sampling criteria in the angular direction, the values
interpolated in that direction by both methods are exact. In the radial direction, where the samples are not of a periodic
function, the approximation entailed in using zero-padding interpolation is comparable to that involved in truncating the
Whittaker-Shannon sinc interpolation series in Stark’s CST approach. The error introduced in using bilinear interpolation in
the final stage of the zero-padding approach can of course be made negligibly small by choosing sufficiently large zero-
padding factors, though in practice, factors as small as 2 in each direction produce excellent results.

The accuracy of bilinear interpolation alone is, not surprisingly, worse than either of the other two methods. The
reconstruction suffers from a depression in values toward the edges of the image, as can clearly be seen in the line profile.
This rolloff phenomenon arises because of the deviation of the effective interpolation kernel from an ideal 2D-sinc
interpolator-—which the CST and zero-padding approaches approximate much more closely—and is discussed in greater detail
by Jackson et al. [3].

The mean images of the noise-contaminated torso phantoms are illustrated in Fig. 3, along with line profiles passing
through the bright annulus representing the heart near the top of the image. The normalized RMS distances listed in Table 2
demonstrate the same trends as in the noise-free reconstruction just discussed. Fig. 4 depicts the variance maps for the three
approaches, along with profiles along the same line as illustrated in Fig. 3. The total variance in each map is listed in Table
2, where it can be seen that simple bilinear interpolation leads to a lower total empirical variance than the other two, whose




results are comparable. This is not surprising as the relatively crude bilinear interpolation smooths over noisy variations in
Fourier space more than the CST and zero-padding approaches.

Table 2. Normalized RMS distances of mean images and total empirical variances for 500 reconstructions of a
torso phantom containing Poisson noise (100,000 counts).

Interpolation Method Normalized RMS Distance Total Variance
Bilinear 0.252 2.78x106
Zero-Padding 0.122 - 4.16x10°
CST 0.127 4.79x100

5. CONCLUSIONS

We have examined the use of three different methods for performing the interpolation from a polar to a Cartesian grid that
is encountered in direct Fourier image reconstruction. Simple bilinear interpolation is, not surprisingly, found to yield poor-
quality images, while a relatively efficient hybrid method, in which zero-padding interpolation is used to increase the density
of polar samples prior to bilinear interpolation onto the Cartesian grid is found to yield comparable results to the much more
computationally intense circular sampling theorem approach. We have attempted to account for the success of this hybrid
approach in three ways. First, we have proved that zero-padding interpolation is exact and equivalent to circular sampling
theorem interpolation when used to interpolate periodic functions sampled in accordance with the Nyquist criterion, which are
precisely the sort that arise in the angular dimension of the polar grid. Second, we have pointed out that both methods make
equivalent approximations in interpolating in the radial direction. Finally, we have indicated that the error arising in the
subsequent use of bilinear interpolation in the hybrid approach can be minimized by increasing the density of polar samples
sufficiently through zero-padding.
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Figure 1. Original numerical phantoms used in noise-free (a) and noise-contaminated (b) studies.
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Figure 2. Direct Fourier reconstructions of the noise-free numerical Shepp-Logan phantom using simple bilinear
interpolation (left), zero-padding interpolation followed by bilinear interpolation (center), with zero-padding factor 2 in both
the angular and radial directions, and circular sampling theorem interpolation (right). The line profiles pass through the three

small structures near the bottom of the images, with the dotted line representing the true values.
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Figure 3. Means of 500 direct Fourier reconstructions of a numerical torso phantom contaminated with Poisson noise
(100,000 counts) using bilinear interpolation (left), zero-padding interpolation followed by bilinear interpolation (center), with
zero-padding factor 2 in both the angular and radial directions, and circular sampling theorem interpolation (right). The line
profiles pass through the annulus near the top of the images, with the dotted line representing the true values.

Figure 4. Variance images of 500 direct Fourier reconstructions of a numerical torso phantom contaminated with Poisson
noise (100,000 counts) using bilinear interpolation (left), zero-padding interpolation followed by bilinear interpolation
(center), with zero-padding factor =2 in both the angular and radial directions, and circular sampling theorem interpolation
(right). The line profiles pass through the annulus near the top of the images.
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Comparison of angular interpolation approaches in few-view
tomography using statistical hypothesis testing
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ABSTRACT

In this work we examine the accuracy of four periodic interpolation methods—circular sampling theorem interpo-
latiom, zero-padding interpolation, periodic spline interpolation, and linear interpolation with periodic boundary
conditions—for the task of interpolating additional projections in a few-view sinogram. We generated 100 different
realizations each of two types of numerical phantom—Shepp-Logan and breast—by randomly choosing the parameters
that specify their constituent ellipses. Corresponding sinograms of 128 bins x 1024 angles were computed analytically
and subsampled to 16, 32, 64, 128, 256, and 512 views. Each subsampled sinogram was interpolated to 1024 views by
each of the methods under consideration and the normalized root-mean-square-error (NRMSE) with respect to the
true 1024-view sinogram computed. In addition, images were reconstructed from the interpolated sinograms by FBP
and the NRMSE with respect to the true phantom computed. The non-parametric signed rank test was then used
to assess the statistical significance of the pairwise differences in mean NRMSE among the interpolation methods for
the various conditions: phantom family (Shepp-logan or breast), number of measured views (16, 32, 64, 128, 256, or
512), and endpoint (sinogram or image). Periodic spline interpolation was found to be superior to the others in a
statistically significant way for virtually every condition.

Keywords: Few-view tomography, interpolation, image reconstruction, sampling, zero-padding, spline, circular
sampling theorem

1. INTRODUCTION

In nuclear-medicine tomographic studies, there is generally a strong correlation between imaging time and image
quality. Longer acquisitions lead to better measurement statistics and thus to less noisy, more quantitatively accurate
reconstructed images. These gains are negated. however, if the long acquisition times lead to patient motion and
thus to motion artifacts in the reconstructed images. Such artifacts are especially common, or expected to be, in
studies such as cardiac single-photon emission computed tomography (SPECT) and the anticipated dependent-breast
SPECT scintimammography!? where older, relatively inflexible patients need to assume an uncomfortable position.
In these studies, the ability actually to reduce current imaging times without severely compromising basic image
quality would likely result in better overall imaging performance due to the reduction of motion artifacts. As an
added benefit, the reduced imaging times would increase patient throughput in busy clinics.

For a constant patient dose, imaging time can be reduced by reducing the number of angular projections acquired,
by reducing the amount of time spent acquiring each projection, or by some combination of the two. While the
distinction between the two is admittedly blurred when using a continuous acquisition mode, we have found in
preliminary studies that so long as certain minimal angular sampling requirements are met, having fewer angular
projections with more counts leads to a higher ideal-observer signal-to-noise ratio in the reconstructed images than
does having more angular projections with fewer counts, given the same total number of counts. In the case of a
step-and-shoot acquisition protocol, which is always used for gated cardiac SPECT, reducing the number of angular
views has the additional benefit of reducing the amount of deadtime spent moving the camera between views. In
this paper, then, we focus on algorithms tailored to generate diagnostically useful images from a smaller number
of angular views than is usually used while holding the number of counts per view constant; that is, we focus on
algorithms for few-view tomography.

The minimum number of angular views required to produce an accurate, artifact-free tomographic reconstruction
of a given object is dictated by two factors. First, the angular sampling of the object’s sinogram must satisfy,
at least approximately, the Nyquist sampling condition.® Absent this, any reconstruction is doomed to suffer from
angular aliasing artifacts. Second, the number of angular samples must satisfy the reconstruction algorithm’s implicit
assumptions about the density of angular sampling. For instance, it is well known that images reconstructed from
a small number of angular views by filtered backprojection (FBP) are degraded by prominent star-shaped artifacts.




These two conditions are not in general equivalent, as can be appreciated most keenly when considering the case of
imaging a circularly symmetric object. In this instance, a single projection view is sufficient to satisfy the Nyquist
sampling condition, while a FBP reconstruction from this single view would be an uninterpretable set of parallel
streaks. Indeed, Brooks et al.? have shown that for a circularly symmetric object imaged with n bins per projection,
a minimum of ~ 1.17n /4 projections must be acquired over 180° to produce an essentially artifact-free reconstruction
using FBP.

The Nyquist condition is the more fundamental of the two sampling requirements discussed above, because when
it is satisfied by a number of samples less than the number required by the reconstruction algorithm. it is in principle
possible to interpolate exactly the additional views needed. This is only strictly true in the absence of noise. of
course, a condition that rarely obtains in emission tomography. We have discussed elsewhere the use of a principled
smoothing technique based on non-parametric regression with an explicit Poisson statistical model to control noise
in each projection prior to the interpolation of additional angular views.®> We have also examined the noise properties
of various interpolation methods when confronted with noise-corrupted samples.® In the present work, then, we
wish simply to address the question of which interpolation approach is most accurate for the interpolation problems
encountered in few-view tomography in the absence of noise, or when noise has been controlled in a previous step.

Because the sinogram is periodic in the angular dimension, the interpolation method chosen should rightly be
periodic. In Section 2.1 we review four periodic interpolation methods being evaluated: circular sampling theorem
interpolation, zero-padding interpolation, periodic spline interpolation, and linear interpolation with periodic bound-
ary conditions. In Section 2.2 we discuss the statistical hypothesis testing approach we have taken to judging the
relative accuracy of the approaches in the face of various few-view tomography interpolation tasks. In Section 3 we
present the results of these evaluations, and finally, in Section 4 we present our conclusions about which interpolation
method is best suited to the task encountered in few-view tomography.

Finally, it should be mentioned that in this paper we focus exclusively on few-view reconstruction involving
FBP even though iterative reconstruction algorithms, such as algebraic reconstruction techniques and maximum
likelihood expectation-maximization, should in principle fare better when reconstructing from a small number of
views because they make no implicit assumptions about the completeness or continuity of the projection dataset.
While an exploration of the performance of iterative algorithms in the face of few-view datasets will be the subject of
later work, we felt it important to begin with an examination of FBP, which remains the most widely used algorithm
in clinical settings.

2. METHODS
2.1. Periodic Interpolation Methods
2.1.1. Circular sampling theorem and zero-padding interpolation

Circular sampling theorem (CST) interpolation is a special case of Whittaker-Shannon (W-S) sinc interpolation that
applies to periodic functions.”® Consider a periodic function g(z) that has period X and which is bandlimited to
frequency K (i.e., the coefficients of expansion a; of the function’s Fourier series satisfy ax = 0 for |k| > K). Given
N > 2K + 1 samples of g(z) taken at points z,, = n.X/N (n = 0,..., N — 1) evenly spaced over one period, the CST
states® that g(z) can be interpolated exactly by use of

N-1
a(I) = Z .(/(In)UN(I - :En): (1)
n=0
where
on(z) =sin[(2K + 1)rz/X]/Nsin(rz/X). (2)

If the Nyquist condition is not satisfied, that is, if g(z) is not truly bandlimited to frequency K orif N < 2K +1,
Eqgs. (1) and (2) no longer represent exact interpolation, but they remain mathematically meaningful and, often,
practically useful. For instance, if the spectral components beyond frequency K are negligibly small but not exactly
zero, interpolating with Eqgs. (1) and (2) remains very accurate.

A second periodic interpolation approach, zero-padding (ZP) interpolation, involves extending the discrete Fourier
transform (DFT) of a finite sequence with zeroes and taking an inverse DFT to generate a more densely sampled



version of the original sequence with values interpolated at intermediate positions between the original measured
samples.® 2 Specifically, one begins by taking the DFT of the sequence g(z,), which is given by
el
== Z g(z,) exp(—j2ank/N), (3)

n=0

for k =0,...,N — 1,where j = v/—1. Zero-padding involves the creation of a new sequence dy, having L = PN
elements (where P is an integer). If g(x) is assumed to be bandlimited to frequency K and if N > 2K + 1, the
sequence dy is defined as follows:

" E=0,.. K
dpr = 0 M=K+1,..,.L-K -1 (4)
Ci!' —L+N k=1L —IX’,...,L— 1.

A more densely sampled sequence g(z;). where z; = [X/L (I =0,...,L—1), is now obtained by taking the inverse

DFT of the sequence dj,
L-1

9(z)) =) _ di exp(j2rik'/L), (5)
k'=0
for | = 0....,L — 1. ZP interpolation is generally viewed as a somewhat crude interpolation approach, but this
reputation is undeserved. It can be shown that ZP interpolation is equivalent to CST interpolation, in that the
spatial-domain interpolation function corresponding to the ZP operation in frequency space is just on(z) given in
Eq. (2).!3 That is, it can be shown that

N-1

§lz) = > glan)on(z — z), (6)

n=0

where o (2) is given by Eq. (2). This equivalence holds regardless of whether the Nyquist condition is satisfied. If
it is satisfied, then ZP interpolation, like CST interpolation, is exact. Obviously, the CST interpolation formula can
be used to estimate g(z) at any arbitrary point z whereas zero-padding interpolation is constrained to interpolate
onto a fixed, equispaced grid P times denser than the original samples. However, since ZP yields a continuous
interpolated curve in the limit as P — oo, we shall treat these two approaches as one in the subsequent analysis,
using the continuous form of Eq. (1) to represent them both. Given this equivalence, ZP is in gencral to be preferred
in practice because it is considerably more computationally efficient than the CST. Whenever using ZP/CST below,
we take K to be N/2 — 1; that is, we assume that the bandlimit of the function is equal to (or higher than) than the
Nyquist frequency of the samples.

2.1.2. Periodic spline interpolation

Splines are piecewise cubic polynomials that are continuous up to and including the second derivative at the joints
between pieces.!41®  Periodic splines are further constrained to satisfy periodic boundary conditions. A spline g(z)
can be represented by

G(z) = ay + bz — 2,) + calz — 2,)% + dn(z — 2)°, (7
for ¢ € {z,,2n41], where the z, are the abscissas at which the data is measured and n = 0,..., N — 1. Fitting
a spline is thus tantamount to finding the coefficients a,, by, ¢,, and d, subject to interpolation, continuity, and
boundary conditions. A number of efficient. algorithms exist for doing so.'*

2.1.3. Linear interpolation with periodic boundary conditions
The last approach to be considered is also the simplest: linear interpolation with periodic boundary conditions. In
this case the interpolation takes the form

g9(z) = (1 —w,(x))g(zn) + wn(z)g(mn-{—l)a (8)

for € [z, Tn41]), where the z, are the abscissas at which the data is measured, n = 0,...,N — 1, and w,(z) =
(z — 2,)/(zps1 — x). The peridocity condition enters when n = N — 1, in which case g(zn) is taken to be equal to

9(x)-




Figure 1. Six typical realizations of the breast (upper) and Shepp-Logan (lower) types of phantoms whose sinograms
were used in the interpolation accuracy studies. The realizations were generated by choosing the parameters governing
the phantoms’ constituent ellipses at random according to predetermined probability laws.

2.2. Evaluation of Accuracy Using Statistical Hypothesis Testing

Various theoretical claims can be made about the accuracy of the interpolation methods being considered, each
depending on the degree to which the data satisfv the assumptions underlying the method. For instance, linear
interpolation is exact if the true function is piecewise linear between the measured samples and quite accurate if the
function is sampled densely enough that it is nearly linear between measured samples. The same holds for spline
interpolation and piecewise cubic. or nearly so. functions. CST and ZP interpolations, as noted above, are exact for
periodic functions that are bandlimited to the Nvquist frequency of the samples. Another approach to the evaluation
of interpolation methods involves examining the Fourier transforms of the methods’ interpolation kernels to see
how well they approximate the rectangular transform of the theoretically exact sinc kernel. This again implicitly
assumes that the function is bandlimited to the Nyquist frequency of the samples, or, at least, that violations of the
bandlimited assumption only negligibly compromise the accuracy of the approach.

Real data rarely satisfy any of these assumptions exactly. and in practice we have found that mild violations,
particularly of the bandlimited assumption. can lead to undesirable errors. We wished to judge the methods being
considered, then, not on the basis of theoretical claims but empirically in the context of the task of interest: the
interpolation of additional angular views in a sinogram. To do so. we required numerical phantoms whose projections
could be calculated analytically. In this way, we could generate a sinogram with a reduced number of views, interpolate
to a larger number of views, and then compare quantitatively the interpolated sinogram to the exact sinogram for
the corresponding number of views. Fortunately. it is possible to compute the projections an ellipse of arbitrary
size, position, and orientation exactly.'® allowing much freedom in the design of objects whose sinograms were to be
interpolated. We focused on two types of phantoms: the familiar Shepp-Logan brain phantom!” and a simulated
breast phantom consisting of a large outer circle. some slightly smaller background ellipses, and small circular lesions.

Simply comparing the success of the approaches in interpolating a single sinogram each for one or two canonical
phantoms would provide more anecdotal than genuinely rigorous evidence on which to base the choice of interpo-
lation method for few-view tomography. The outcome could depend as much on numerical happenstance as on the
genuine strengths of the approaches. Instead. we generated 100 different “realizations” of each of the two types of
numerical phantom by choosing the parameters specifving the constituent ellipses of each type to vary according to
predetermined probability laws. Some typical phantom realizations are illustrated in Figure 1.

For each realization of the phantom parameters we generated a parallel-beam sinogram of 128 bins and 1024
angular views. We then subsampled the sinogram to generate sinograms of 16, 32, 64, 128, 256, and 512 views. Each
of these subsampled sinograms was interpolated to 1024 views by applying each of the three periodic interpolation
approaches discussed in turn. The resulting interpolated sinograms were then compared to the analytically computed
1024-view sinogram and the normalized root-mean-square error (NRMSE) between the two computed. This error

measure is defined as /
1/2

R R R R
d= > "> (ty—r)* /D Yty —D*) (9)

=1 i=1 i=1 i=1



[ | ZP vs. Spline | Spline vs. Linear [ Linear vs. ZP |
# views | Mean Diff. | W, | p-value | Mean Diff. . p-value | Mean Diff. Wy p-value
16 1.09x10-3 | 29.0 | 0.0000 | 4.96x10~ 7 | 1234.0 | 0.0000 | -1.58x107° | 4572.0 | 0.0000
32 6.98x10-% | 12.0 | 0.0000 | -4.40x10~7 | 4286.0 | 0.0000 | -2.58x10~* | 2946.0 | 0.0739
64 3.10x10-2 | 0.0 | 0.0000 | -3.91x10~% | 5024.0 | 0.0000 | 8.19x107°> | 1882.0 | 0.0135
128 1.72x10~% | 4.0 | 0.0000 | -1.51x10"* | 5003.0 | 0.0000 | -2.0x10~° | 3040.0 | 0.0383
256 0.06x10-° | 0.0 | 0.0000 | -6.86x10~° | 4890.0 | 0.0000 | -2.2x107° | 3664.0 | 0.0000
512 283x10°° | 1.0 | 0.0000 | -2.95x107° | 4835.0 | 0.0000 | -1.88x10~° | 4239.0 | 0.0000

Table 1. Pairwise mean breast phantom sinogram NRMSE differences, test statistics, and p-values for the three
interpolation methods.

where ¢;; and r;; represent the pixel values of the pixel in the ith row and jth column of the true and reconstructed
RxR images, respectively, and  denotes the average pixel value in the true image. In order to see how the sinogram
interpolation error affected the accuracy of reconstructed images, we also used FBP to reconstruct an image from
each sinogram interpolated by each of the three approaches, and then calculated the NRMSE with respect to the
true phantom.

The result of this simulation was a set of 100 NRMSE values for each combination of phantom family (Shepp-
logan or breast), interpolation method (CST/ZP, spline, or linear), number of measured views (16, 32, 64, 128, 256,
or 512), and endpoint (sinogram or image). This data lent itself naturally to a statistical hypothesis testing analysis
seeking to evaluate for each task (phantom family, number of measured angles, and endpoint) the null hypothesis
that, considered pairwise, the three interpolation methods yielded the same NRMSE. Refuting the null hypothesis
would allow the methods to be ranked for each task.

Because the interpolation methods were applied in parallel to the same realizations of the phantom, a paired test
must be used to evaluate the null hypotheses. The familiar paired t-test, in which the differences between paired
samples are compared to cutoffs of the t-distribution, implicitly assumes that the differences are a sample from a
normal distribution. As exploratory data analysis indicated that the distribution of differences was not evidently
normal in the present case, we turned instead to the nonparametric signed rank (SR) test for paired samples.'® In
the SR test, the absolute values of the differences are ranked (with appropriate handling of ties), the signs of the
differences applied to the corresponding ranks, and the sum W, of those ranks having positive signs computed.
The distribution of W under the null hypothesis that the two conditions produce the same values can be easily
computed, and extreme values of W'y signal that one condition tends to produce larger value than the other. Finally,
the p-value (the probability that a 117, as extreme or more extreme than the one found could arise under the null
hypothesis) of each W, can be computed from this distribution as well.

3. RESULTS

The results for the interpolation of the family of breast phantoms are depicted in Figure 2. For each interpolation
method. Figure 2(a) plots the mean sinogram NRMSE for the 100 realizations versus the number of measured
projections. A higher NRMSE corresponds to worse accuracy. Because the curves in Figure 2(a) are difficult
to distinguish, particularly for large numbers of measured projections, the NRMSE relative to the periodic spline
NRMSE at each number of measured projections is plotted in Figure 2(b). The corresponding curves for reconstructed
image NRMSE are depicted in Figures 2(c) and 2(d). Tables 1 and 2 list the mean difference between each pair of
methods for each number of measured projections as well as the corresponding value of the SR statistic W, and
its two-sided p-value. A low p-value indicates that the mean difference between the two methods is statistically
significant, and we adopt throughout a stringent 0.01 cutoff for statistical significance.

A few trends common to all three interpolation methods can be gleaned from Figure 2. For one, the accuracy of
all three approaches, as measured by the sinogram NRMSE, improves rapidly as the number of measured projections
increases. This is not surprising—the assumptions underlying all three approaches are better satisfied as the number
of samples increases—but it does offer an interesting contrast to the trend seen in reconstructed image NRMSE.
These NRMSE values level off beyond 64 samples, with the change in overall NRMSE from one number of measured
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Figure 2. NRMSE and relative NRMSE plots for the family of breast phantoms. (a) Plot of sinogram NRMSE
vs. number of measured projections for each interpolation method. (b) Plot of sinogram NRMSE relative to spline
sinogram NRMSE vs. number of measured projections for each interpolation method. (c) Plot of reconstructed
image NRMSE vs. number of measured projections for each interpolation method. (d) Plot of reconstructed image
NRMSE relative to spline image NRMSE vs. number of measured projections for each interpolation method.

L |

ZP vs. Spline

Spline vs. Linear

Linear vs. ZP

# views | Mean Diff. Wy p-value | Nean Diff. Wy p-value | Mean Diff. Wy p-value
16 2.65x107° 88.0 0.0000 | 1.91x10=% | 966.0 | 0.0000 | -4.56x10~> | 4520.0 | 0.0000
32 1.40x10-3 | 147.0 | 0.0000 | -7.76x10~7 [ 3771.0 | 0.0000 | -6.26x10~* | 2659.0 | 0.3225
64 2.54x10-% | 138.0 | 0.0000 | -7.03x10~7 | 4237.0 | 0.0000 | 4.49x10~% | 1444.0 | 0.0001
128 6.74x107° 3.0 0.0000 | -5.33x10~" | 2281.0 | 0.2008 | -1.41x10~° | 3227.0 | 0.0079
256 3.30x10~° 75.0 0.0000 | 2.69x10~° | 1005.0 | 0.0000 | -3.02x10=° | 4138.0 | 0.0000
512 2.00x10—7 | 1289.5 | 0.0000 | 7.90x10~% | 509.0 | 0.0000 | -8.00x107° | 4466.5 | 0.0000
Table 2. Pairwise mean breast phantom image NRMSE differences, test statistics, and p-values for the three

interpolation methods.

projections to the next being comparable to the differences among the interpolation method for a given number of
measured projections. This leveling off is of course due to the fact that errors associated with other inacurracies in
the image reconstruction process, such as finite radial sampling, come to overwhelm the error due to finite angular
sampling as the number of angular samples grows large.

As for the relative performance of the three interpolation approaches, when comparing sinogram NRMSEs,
periodic spline interpolation is seen to be superior to the other two in a statistically significant way for all but the
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Figure 3. NRMSE and relative NRMSE plots for the family of Shepp-Logan phantoms. (a) Plot of sinogram NRMSE
vs. number of measured projections for each interpolation method. (b) Plot of sinogram NRMSE relative to spline
sinogram NRMSE vs. number of measured projections for each interpolation method. (c) Plot of reconstructed
image NRMSE vs. number of measured projections for each interpolation method. (d) Plot of reconstructed image
NRMSE relative to spline image NRMSE vs. number of measured projections for each interpolation method.

smallest number of samples—16—where linear interpolation performs best. Linear interpolation is seen to be better
than or statistically indistinguishable from ZP interpolation for all numbers of measured projections. Similar trends
arc observed in comparing image NRMSEs. Spline outperforms ZP interpolation in every case, and is better than
linear interpolation for moderate numbers of measured projections, but slightly worse or indistiguishable for very
large numbers of samples. Linear is again seen to be better than or indistinguishable from ZP for all numbers of
measured projections except 64. It may at first seem paradoxical that comparing image NRMSEs does not always
vield the same relative performance as sinogram NRMSEs. Shouldn’t more accurate sinograms necessarily produce
more accurate images? The resolution lies in the fact that NRMSEs are global error measures obtained by summing
over local errors. It is the local errors that propagate directly into the reconstructed images and these may combine
or cancel differently depending on their relative positions in the sinogram. Thus the geography of the local sinogram
errors, as well as their sum, influences the global error in the reconstruction, and so a sinogram with a higher NRMSE
than another can in principle lead to a reconstructed image with a lower NRMSE than the other.

The corresponding results for the family of Shepp-Logan phantoms are illustrated in Figure 3 and Tables 3 and
4. The same trends are observed with regard to the overall performance of the three approaches. The sinogram
NRMSE:s fall rapidly with increasing number of measured projections, while the reconstructed image NRMSEs level
off rapidly beyond 64 projections. While these trends are as before, it should be pointed out that the magnitude of
the NRMSEs for both sinograms and reconstructed images is significantly higher for the Shepp-Logan type phantoms
than it was for the breast phantoms, owing to the fact that the Shepp-Logan phantoms are more complex and their
sinograms more variable in the angular direction than the breast phantoms.



[ | ZP vs. Spline [ Spline vs. Linear | Linear vs. ZP ]
# views | Mean Diff. | W, | p-value | Mean Diff. | W, | p-value | Mean Diff. W, | p-value
16 1.12x107° 0.0 0.0000 | -2.58x1073 | 5045.0 | 0.0000 | 1.45x10=° | 575.0 | 0.0000
32 1.24x10-° | 53.0 | 0.0000 | -2.17x103 | 5032.0 | 0.0000 | 9.18x10~* | 1530.0 | 0.0003
64 5.72x10-2 | 747.0 | 0.0000 | -1.83x10~3 | 4503.0 | 0.0000 | 1.26x10% | 1252.0 | 0.0000
128 5.27x1071 9.0 0.0000 | -6.19x10~% | 4945.0 | 0.0000 | 9.20x10~° | 2136.0 | 0.0905
256 3.82x1074 1.0 0.0000 | -3.06x10~* | 4845.0 | 0.0000 | -7.58x107° | 3102.0 | 0.0236
512 1.94x10~* 0.0 0.0000 | -1.39x10~% | 4722.0 | 0.0000 | -5.52x10=° | 3203.0 | 0.0099

Table 3. Pairwise mean Shepp-Logan phantom sinogram NRMSE differences, test statistics. and p-values for the
three interpolation methods.

[ | ZP vs. Spline ] Spline vs. Linear ] Linear vs. ZP |
# views | Mean Diff. Wy p-value | Mean Diff. W, p-value | Mean Diff. Wy p-value
16 6.91x1073 0.0 0.0000 | 4.88x10~2 | 244.0 | 0.0000 | -1.18x10~* | 5050.0 | 0.0000
32 4.10x1073 177.0 | 0.0000 | -9.31x1072 | 5050.0 [ 0.0000 | 5.21x10~° 968.0 | 0.0003
64 1.07x10-7 | 2454.0 | 0.4036 | -1.46x1072 | 5050.0 | 0.0000 | 1.44x107° 0.0 0.0000
128 1.36x107° 0.0 0.0000 | -5.95x10=7 | 3909.0 | 0.0000 | -7.68x10% | 4153.0 | 0.0905
256 2.19x10~1 0.0 0.0000 | 6.57x1077 0.0 0.0000 | -8.77x10~* | 5050.0 | 0.0236
512 9.00x107° 1.0 0.0000 | 2.12x1074 0.0 0.0000 | -2.21x10~T | 5050.0 | 0.0099

Table 4. Pairwise mean Shepp-Logan phantom image NRMSE differences, test statistics, and p-values for the three
interpolation methods.

As for the relative performance of the interpolation methods for the Shepp-Logan phantoms, the results are
similar but not identical to those of the breast phantom. When comparing sinogram NRMSEs, periodic spline
interpolation is seen to be better than ZP or linear interpolation in a statistically significant way for all numbers of
measured projections. Linear interpolation is better than ZP for larger numbers of projections (256 or 512), worse
for small numbers (16, 32, and 64). and indistingushable for 128 projections. When comparing reconstructed image
NRMSEs, spline is still better than ZP for every number of measured projections, and, as before, better than linear
interpolation for moderate numbers of projections (32, 64, and 128) while worse for extreme numbers (16, 256, and
512). Linear is better than zero-padding for extreme numbers of measured projections (16, 128, 256, and 512) and
worse for moderate numbers (32 and 64).

4. DISCUSSION AND CONCLUSIONS

We have presented a study of the empirical accuracy of three different interpolation approaches for the task of
interpolating additional angular views in a sinogram. For two types of numerical phantom—Shepp-Logan and
breast—we generated 100 different realizations by randomly choosing the parameters that specify their constituent
ellipses. Sinograms of 128 bins x 1024 angles were computed analytically and subsampled to 16, 32, 64, 128, 256,
and 512 views. Each subsampled sinogram was interpolated to 1024 views by each of the three methods under
consideration—CST/ZP, periodic spline, and linear interpolation—and the NRMSE compared to the true 1024-view
sinogram computed. The non-parametric signed rank test was then used to assess the statistical significance of the
pairwise differences in mean NRMSE among the interpolation methods for the various conditions: phantom family
(Shepp-logan or breast), number of measured views (16, 32, 64, 128, 256, or 512), and endpoint (sinogram or image).

Periodic spline interpolation was found to be superior in a statistically significant way to CST/ZP and linear
interpolation for virtually every condition. It was superior to CST/ZP in every instance, and fell short of linear
interpolation only in the case of a very small number of measured angles (16) for breast sinogram NRMSE and for
extremely large or small numbers of angles for reconstructed image NRMSE for both types of phantoms. It was
certainly always superior for interpolation from the moderate number of angles—32 and 64—likely to be relevant to
few-view tomography. The strong performance of spline interpolation can be attributed to the combination of its



great flexibility and relatively local response. That is, while splines can capture subtle features that frequently elude
piecewise linear curves, they do not allow sharp edges that they are unable to capture faithfully to influence unduly
the accuracy of the curve at distant points. CST,/ZP interpolation, on the other hand, while blessed with considerably
more flexibility than linear interpolation, tends to suffer from widespread ringing artifacts (Gibbs phenomena)!® when
sharp edges cause a violation, however mild, of the bandlimited assumption on which it is built.

Indeed, the relatively poor performance of CST/ZP interpolation was one of the surprises in this work, and
careful examination of individual curves interpolated by this method indicated that Gibbs artifacts were indeed the
principal cause of the poor performance. Ironically, while the severity of the ringing increases as the number of
measured samples decreases, zero-padding performed relatively well in this range compared to linear interpolation
(though not to spline), and generally fell behind linear only for denser sampling. This is likely because at this low
sampling density the piecewise linear approximation is so poor over most of the function being interpolated that
CST/ZP, with its more flexible curves, performs better despite the ringing. The ringing only becomes a factor as
both methods perform similarly over the slowly varying parts of the curve, with linear interpolation’s local response
around edges then being preferable to the ringing introduced by CST/ZP. Attempts to mitigate the ringing using
anti-oscillation filters such as Lanczos’s sigma filters?® met with some success, but the smoothing caused by these
filters degraded the NRMSE performance at least as much as the ringing had. In short, unless the few-view data is
known to be precisely bandlimited, CST/ZP interpolation is not recommended.

This phenomenon of non-local response may also explain linear interpolation’s suprising success relative to spline
interpolation for large numbers (256 or 512) of measured projections. With sampling of such density, the piecewise
linear approximation is of course very good over most of the curve, and those few points where the approximation
is not very good contribute little to the total NRMSE. The accuracy of spline interpolation, on the other hand,
is likely to be comparable to linear interpolation over most of the interpolated points, but may suffer more widely
the effects of an edge because the spline interpolation kernel is considerably wider than that of linear interpolation.
Nonectheless, spline interpolation was seen to be clearly superior for both simple and complex objects in precisely the
angular sampling range (32-64) of interest to few-view tomography.
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Abstract

A number of methods exist specifically for the interpolation
of periodic functions from a finite number of samples.
When the samples are known exactly, exact interpolation is
possible under certain conditions, such as when the function
is bandlimited to the Nyquist frequency of the samples.
However, when the samples are corrupted by noise, it is just
as important to consider the noise properties of the resulting
interpolated curve as it is to consider its accuracy. In this
work, we derive analytic expressions for the covariance and
variance of curves interpolated by three periodic interpolation
methods—circular sampling theorem, zero-padding, and
periodic spline interpolation—when the samples are corrupted
by noise. We perform empirical studies for the special cases of
white and Poisson noise and find the results to be in agreement
with the analytic derivations. The implications of these findings
for few-view tomography are also discussed.

I. INTRODUCTION

The need to interpolate samples of periodic functions arises
in a number of important medical imaging applications. For
instance, when performing emission computed tomography
imaging of a compact, reasonably symmetric object, such
as the breast, one can achieve adequate angular sampling
of the object’s sinogram with a relatively small number of
projection views. However, using filtered backprojection (FBP)
to reconstruct the image may still lead to star-shaped artifacts,

because FBP implicitly requires a relatively high density of . .

angular samples [1]. In these situations, periodic interpolation
may be used to interpolate additional angular views between
the measured ones in order to satisfy FBP’s sampling
requirements. The need to perform periodic interpolation
also arises in direct Fourier image reconstruction, where it is
necessary to interpolate from a polar to a Cartesian grid in
Fourier space [2]. The interpolation is often accomplished
using separate 1D interpolations in the radial and azimuthal
directions, and the azimuthal interpolation should rightly be
periodic.

There exist a number of methods for interpolating periodic

functions. Circular sampling theorem (CST) interpolation,
for “one, is a special case of Whittaker-Shannon (W-S)

“sinc interpolation that applies to periodic functions [3, 4].

Consider a periodic function g(z) that has period X and
which is bandlimited to frequency K (i.e., the coefficients of
expansion aj, of the function’s Fourier series satisfy ax = 0 for
|k| > K). Given N > 2K + 1 samples of g(z) taken at points
zn = nX/N (n = 0,...,N — 1) evenly spaced over one
period, the CST states [4] that g(z) can be interpolated exactly

by use of
N-1
9(z) = Y glzn)on(z - za), (1)
n=0
where
on(z) =sin[(2K + 1)wz/X]/N sin(rz/X). (2)

If the Nyquist condition is not satisfied, that is, if g(x) is not
truly bandlimited to frequency K or if N < 2K + 1, Egs. 1
and 2 no longer represent exact interpolation, but they remain
mathematically meaningful and, often, practically useful. For
instance, if the spectral components beyond frequency K are
negligibly small but not exactly zero, interpolating with Egs. 1
and 2 remains very accurate.

A second periodic interpolation approach, zero-padding
(ZP) interpolation, involves extending the discrete Fourier
transform (DFT) of a finite sequence with zeroes and taking an
inverse DFT to generate a more densely sampled version of
the original sequence with values interpolated at intermediate
positions between the original measured samples (5-81.
Specifically, one begins by taking the DFT of the sequence
g(z,), which is given by

N-1
1 .
ok = 3 ; g(zy) exp(—j2mnk/N), 3)
fork=0,...,N — 1,where j = /—1. Zero-padding involves

the creation of a new sequence dy, having L = PN elements
(where P is an integer). If g(x) is assumed to be bandlimited to
frequency K and if N > 2K + 1, the sequence dy is defined
as follows:

Crr K =0,... K
dy = 0 K=K+1,...,L-K-1 4)
Cr'—L+N kIZL—-K,...,L—l.

A more densely sampled sequence g(z;), where z; = [X/L
(1 =0,...,L —1),is now obtained by taking the inverse DFT
of the sequence dy,

L-1
g(z)) =Y dw exp(j2nlk'/L), (5)

k' =0
forl = 0,...,L — 1. ZP interpolation is generally viewed as

a somewhat crude interpolation approach, but in fact nothing
could be further from the truth. It can be shown that ZP
interpolation is equivalent to CST interpolation, in that the

0018-9499,/99810.00 © 1999 IEEE
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spatial-domain interpolation function corresponding to the ZP
operation in frequency space is just o (x) given in Eq. 2 [9].
That is, it can be shown that

N-1

glz) =Y g(za)on(zr = ),

n=0

(6)

where on(z) is given by Eq. 2. This equivalence holds
regardless of whether the Nyquist condition is satisfied. If it
is satisfied, then ZP interpolation, like CST interpolation, is
exact. Obviously, the CST interpolation formula can be used
to estimate g(z) at any arbitrary point 2 whereas zero-padding
interpolation  is constrained to interpolate onto a fixed,
equispaced grid P times denser than the original samples.
However, since ZP yields a continuous interpolated curve in
the limit as P — oo, we shall treat these two approaches as one
in the subsequent analysis, using the continuous form of Eg. 1
to represent them both.

The final periodic interpolation method to be examined is
periodic spline (PS) interpolation. Splines are piecewise cubic
polynomials that are continuous up to and including the second
derivative at the joints between pieces [10, 11]. Periodic splines

are further constrained to satisfy periodic boundary conditions. -

A spline g(z) can be represented by

§(x) = an + bp(z — zpn) + cnlz — zn)2 + dp(x - a:n)3,

(7
for x € [T,, Tn41], Where the z, are the abscissas at which the
data is measured and n = 0, ... , N — 1. Fitting a spline is thus

tantamount to finding the coefficients ay, by, ¢y, and d,, subject
to interpolation, continuity, and boundary conditions. Because
evaluating a spline at a particular point z involves evaluating
Eq. 7 using the an, by, cn, and d,, corresponding to the interval
[Tn, Tn41] in which z falls, we can think of representing a
spline as an N-component vector of functions, in which the nth
component corresponds to the interval [z, T,+1) and contains
a function of the form of Eq. 7 with the appropriate values
substituted for a,, by, ¢i, and d,,. To reflect this understanding
and simplify later calculations we introduce the somewhat
unconventional notation

g(z) = a + D(z)b + D*(z)c + D¥(x)d, (8)

where g(z) is an N-element vector of functions, a is the N-
element vector with coefficients a,, and likewise for b, ¢, and
d, and D is a diagonal matrix with Dy, = T — T,.

In fitting a spline, the coefficients are obtained by linear
operations on the measured data. If the measured samples
g(z,,) are represented as an N-element vector g, the vectors of
coefficients can be found from g through matrix multiplications
a = Ag, b = Bg, ¢ = Cg, and d = Dg, where the matrices
A, B, C, and D can be deduced from [11]. Substituting for a,
b, ¢, and d in (8) in terms of these matrix products yields

g(z) = [A+D(z)B+D*(z)C + D*(z)D]g. (9

While not theoretically exact for the interpolation
of periodic, bandlimited functions, periodic splines can

nonetheless be very accurate in that situation [12]. And in
practice, when interpolating functions that are not exactly
bandlimited, periodic splines often outperform CST and ZP
interpolation, which are quite sensitive to departures from the
bandlimited assumption, giving rise to high-frequency (Gibbs)
artifacts [13]. In fact, if the smoothness of a function is defined
in terms of the function’s integrated second derivative, it can
be shown that splines are the smoothest possible interpolant to
any set of samples [14].

While questions about the accuracy of various interpolation
approaches are paramount when the measured samples are
known exactly, other concerns arise when the samples are
known to be corrupted by noise. In particular, it becomes
important to analyze how the noise is propagated into the
interpolated samples. Consider now that the samples of 9(x)
are corrupted by additive, zero-mean noise. These noisy
samples can be represented as

9(zn) = (g(za)) + n(za), (10)
where g(z,) and n(z,) are random variables, the latter
representing zero-mean additive noise, and () represents the
expectation operator. The aim of this paper is to derive the
covariance and variance of the curves interpolated by means of
CST/ZP interpolation and PS interpolation, to compare these
analytic predictions with results of Monte Carlo simulations,
and to draw conclusions from these results about the suitability
of the various approaches for the interpolation task encountered
in few-view tomography.

II. METHODS

A. Analytic Derivations

Let §(x) be a curve interpolated from the noisy samples of
Eq. 10 by CST or ZP interpolation. The covariance between
two points = and z’ of this function is given by

cov(z,z') = ([9(z) — (=) [5(=") — @=N) -

Of course, once the covariance has been computed, the variance
at any point z is given by var(z) = cov(z,z). Evaluation of
Eq. 11 is straightforward as g(z) is given by

(11)

N-1
9@) =Y (glan)) + nlz))on(z —zn),  (12)
n=0
where on () is given by Eq. 2, and thus
covz,) = ([TN5 n(@a)on (@ - o))
x [ShZinemon(@ —zn)]),  (13)

which can be rewritten

cov(z,2') = Yncy Somo lon (@ = 2a)on (@' = Zm)

x (n(zn)n(zm))] - (14)




Without additional assumptions about the noise, this
expression cannot be simplified any further. In Section III we
will consider simplifications to this expression for white noise
and uncorrelated Poisson noise.

For periodic spline interpolation, the calculation of a
covariance function is complicated by the fact that the points
z and z’' at which the covariance is being evaluated will
in general fall into different intervals of the spline and the
spline’s value at these points will thus be specified by functions
corresponding to different elements of the vector g(z). This
is best handled by thinking in terms of computing an NxN
matrix of covariance functions whose elements correspond to
the possible combinations of pairs of intervals into which z and
z' could fall. That is, given points z and z’ between which it is
desired to evaluate the covariance, one would compute the two
intervals ¢ and j in which these points fall and then evaluate the
covariance function found in the 45" position of the matrix.
This matrix, which we denote with capital letters COV (z,z'),
is given by

COV(z,2') = ([B(=) - @@ &G - @), 1S)
or using Eq. 9
COV(z,z") = ([4 + D(z)B + D*(z)C + D*(z) D]
xnn” [A + D(z')B + D*(a')C + D3(:c')D]T> . (16)

where n is the N-element vector with entries n(z,), which of
course reduces to

COV(z,z') = [4 + D(z)B + D*(z)C + D*(z) D]

x (nnT) [4 + D(z')B + D2(z)C + D) D]"
Again, without further assumptions about the noise, this
expression cannot be simplified any further. In Section III we

will consider simplifications to this expression for white noise
and uncorrelated Poisson noise.

a7

B. Monte Carlo Simulations

To confirm the analytic results derived above and applied
below to the cases of white and uncorrelated Poisson noise,
we performed Monte Carlo simulations employing each of
these kinds of noise. We first calculated analytically 128
equispaced samples of a typical periodic function encountered
in tomography: the angular function corresponding to one
bin of the sinogram of a Shepp-Logan head phantom {15].
This function is shown in Fig. 1. We generated R=50,000
noise realizations of these samples contaminated with additive,
zero-mean Gaussian noise (a;;’ = 16) and 50,000 others with
Poisson noise. We then interpolated each of these realizations
to 1024 samples using the methods discussed above. For CST
and ZP interpolation, we took K = 63, the largest value it
could have while still being below the Nyquist frequency of
the 128 samples. We calculated the sample variance 5%(z;) at
each interpolated point z; using

R

R 2
1 1 ~
= — Ai i) ™ B gl(x)} s (18)
(R_l)Z{gm(%) R; (2

i=1

5% (z;)
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Figure 1: This periodic function, which is the angular function
corresponding to one bin of a Shepp-Logan head phantom sinogram,
was sampled 128 times and the samples then contaminated by
Gaussian or Poisson noise prior to using CST/ZP and periodic spline
interpolation to interpolate a sequence 8 times as dense.

where g(;)(z) is the curve interpolated from the i noise
realization. Similarly, we computed the sample covariance
between each of 9 samples and the 1024 interpolated samples.
This sample covariance between two points z; and z was
computed using

- 1 & 1 &
Cl(zj,zx) = R——-IZ {ﬁ(i)(mg’) -5 Zﬁ(z‘)(%)}
i=1 i=1

R

~ 1 - .

X {g(i)(ﬂﬂk) "R E g(i)(wk)}- (19)
i=1

C. Image Noise Power Spectra

As mentioned in the introduction, periodic interpolation
methods can be applied to the problem of interpolating
additional projection views in few-view tomography. While
the noise properties of the interpolated sinogram can be
inferred from the analytic derivations discussed above, it
is just as important to consider the noise properties of the
images reconstructed from such sinograms, because these
noise properties, as characterized by a noise power spectrum
(NPS), greatly influence the detectability of small objects [16].
For this reason, we wished to calculate the NPS of images
reconstructed after sinogram interpolation by CST/ZP and’
PS interpolation, as well as the NPS of images reconstructed
directly from both a small and large number of views.

Though the noise power spectrum is strictly defined

only for stationary noise processes, and the noise in images

reconstructed from interpolated sinograms is not stationary
due to the correlation between projections, there is precedent
for examining the so-called average power spectrum of
nonstationary processes [17]. To estimate the power spectrum
for each approach, we generated 1000 sinograms containing
only white, Gaussian noise (ag = 10) and consisting of
128 projections bins and either 30 or 120 projection angles
depending on which reconstruction approach was to be used.
The sinograms were then either reconstructed directly by
FBP or interpolated to 120 views using CST/ZP and PS
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interpolation and then reconstructed by FBP. Each resulting
noise image was multiplied by a circularly symmetric cosine
window approximately 30 pixels in diameter and a 2D FFT
computed. The resulting spectra were averaged and scaled
so that the the volume under the power spectrum equaled the
average variance in a circle of diameter 30 pixels.

II1. RESULTS

A. White Noise

For CST and ZP interpolation, if the noise in the measured
samples is assumed to be white, with constant variance o2 at
every point, then in Eq. 14, (n(z,)n(zn)) = o 28nm. where
J,m is the Kronecker delta function and we may rewrite Eq. 14
as

N-1
covie.a') = o2 Z on(z — xp)on(z' = zn).
n=0

(20)

This expression may be further simplified by comparing the
sum with Eq. 1 and realizing that it can be viewed as a CST
interpolation of the function on(z — x') sampled at points
2’ =-2,. Because on(x — z') is periodic and bandlimited.to
a frequency ¥ < N/2. the interpolation is exact, and thus we
conclude that '

cov(z.2') = olon(z — 2'). 2
The covariance is thus seen to be shift invariant, depending only
on the difference z — z' between the positions of any two points
in the interpolated curve and not on their absolute positions.
From this result, the variance is easily obtained:

var(z) = cov(z,z) = o2on(0). (22)

From the definition of o (z) in Eq. 2, we see that on(0) =
(21 +1)/N and thus conclude that when applying CST and ZP
interpolation to samples corrupted by white noise, the variance
of the interpolated curve is constant everywhere and equal to
(2K 4+1)/N times the variance in the original samples. Because
N > 2K + 1. this factor is less than or equal to 1, with equality
when N minimally satisfies the Nyquist condition.

The Monte Carlo studies support the analytic findings of
Eqs. 21 and 22. Figure 2(a) depicts a portion of the 1024-point
sample variance curve for CST and ZP interpolation. For
comparison, the analytic prediction is shown in Fig. 2(b). The
sample variance is seen to be approximately constant at all
points. in agreement with the analytic prediction, and it is found
to have average value 15.933, in agreement with the analytic
prediction of 15.875. Figures 2(c) and 2(d) depict the sample
and predicted covariance relative to a fixed point located
midway between two measured samples. While they are not
shown, the sample covariance curves relative to fixed points at
other positions in the interval between measured points were
found to have essentially identical shapes, as expected from the
shift-invariant form of the analytic prediction.

For spline interpolation, the assumption of white noise
with variance o2 implies that in Eq. 17, the outer product
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Figure 2: (a) Portion of sample variance curve for 50.000 realizations
of CST/ZP interpolation from 128 samples to 1024 samples in the
presence of additive, zero-mean Gaussian noise with o2 = 16. (b)
Portion of analytically predicted variance curve for this task. (¢)
Portion of sample covariance curve relative to a fixed point midway
between two measured points. (The shape of the curve for fixed
points at other positions in the interval between measured samples was
identical.) (d) Portion of analytically predicted covariance curve.
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Figure 3: (a) Portion of sample variance curve for 50, 000 realizations
of periodic spline interpolation from 128 samples to 1024 samples in
the presence of additive, zero-mean Gaussian noise with ol = 16.
(b) Portion of analytically predicted variance curve for this task.
The maxima in these curves occur at the locations of the measured
samples. (c) Portion of sample covariance curve relative to a fixed
point midway between two measured points. (The shape of the curve
for fixed points at other positions in the interval between measured
samples was quite different.) (d) Portion of analytically predicted
covariance curve for a fixed point midway between two measured
points.

(nTn) = 21, where [ is the identity matrix. The properties of
the covariance expression given in Eq. 17 cannot be discerned
by inspection and the result must be evaluated numerically. In
particular, to obtain the variance of the interpolated function,
the diagonal elements of the covariance matrix must be
evaluated at = = z'. Figure 3(b) illustrates the result of
such an evaluation. It is clearly seen that unlike CST and ZP




interpolation, the variance is not constant at interpolated points,
but rather falls smoothly to a minimum at points midway
between the original measured samples, while remaining
unchanged at the measured points. The Monte Carlo results
shown in Fig. 3(a) conform quite closely to this prediction.
Figures 3(c) and 3(d) show a portion of the covariance function
relative to a fixed point located midway between two measured
samples. It is seen to have a slightly wider central lobe
than the equivalent curve for CST/ZP interpolation but also
to die out more quickly beyond this central lobe. Unlike
in the CST/ZP case, the covariance curves relative to fixed
points at other positions in the the interval between measured
points were found to have quite different shapes, becoming
asymmetric as the fixed point moves away from the center of
the interval. Thus, the covariance of the interpolated curve is
not shift-invariant for spline interpolation.

B. Poisson Noise

For CST and ZP interpolation, if the noise in the measured
samples is assumed to be uncorrelated Poisson, then in Eq. 14,
(n(zn)n(Tm)) = (9(zn)) 6nm, and we may rewrite Eq. 14 as

N-1
cov(z,z') = 3 (g(zn)) on(z — Tn)on(a’ —zn).  (23)

n=0

This sum can be viewed as a CST interpolation, this time of
the function (g(z')) on(z — z'). However, this function, while
periodic, is not in general bandlimited. However, if (g(z")) is
slowly varying, at least over the interval between = and ', it
can be assumed that the product is approximately bandlimited
and thus that

cov(z,z') = (g(z')) on(z — 2'). 24)

The covariance function is seen to be appfoximately shift

invariant, certainly as the fixed point is moved through any
single interval between measured samples. The variance is
again easily obtained:

var(z) = cov(z, z) = (9(z)) on(0). (25)
Because on (0) = (2K + 1)/N, we find that the variance in
the interpolated curve is flat locally (again, certainly between
the positions of any two measured samples), while globally it
tracks the variance in the measured samples.

The Monte Carlo studies confirm the analytic predictions of
Egs. 24 and 25. Figures 4(a) and 4(b) illustrate how the variance
in the interpolated function, while locally constant, follows the
variance in the measured samples over larger distances. The
covariance function (not shown) is found to behave over short
distances much as it did in the white noise case.

For spline interpolation of data contaminated by Poisson
noise, the same general trends as in the white noise case are
observed. The variance in the interpolated curve again falls
smoothly to a minimum between measured samples, though
now it tracks the variance in the measured samples globally.
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Figure 4: (a) Portion of a sample variance curve for 50,000 realizations
of CST/ZP interpolation from 128 samples to 1024 samples in the
presence of Poisson noise. (b) Portion of analytically predicted
variance curve for this task. (c) Portion of a sample variance curve for
50,000 realizations of periodic spline interpolation from 128 samples
to 1024 samples in the presence of Poisson noise. (d) Portion of
analytically predicted variance curve for this task.

Figure 5: Power spectra for FBP reconstructions of stationary white
Gaussian noise from (a) 30 projections. (b) 120 projections.  (¢)
120 projections interpolated by periodic spline interpolation from
30 projections. (d) 120 projections interpolated by zero-padding
interpolation from 30 projections.

This is clearly seen in Figs. 4(c) and 4(d). The covariance .
curves were found to behave locally as they did in white noise
case, changing form as the fixed point is swept through an
interval between measured points. ‘

C. Image noise power spectra

The spectra are shown in Fig. 5. The high-intensity
streaks on the horizontal and vertical midlines are related to
the use of linear interpolation in the radial direction during
backprojection. The NPS for a direct reconstruction from 30
views shown in Fig. 5(a) is seen to consist of distinct rays
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passing through the origin, as predicted by theory [18]. The
NPS for a direct reconstruction from 120 views shown in
Fig. 5(b) has a more continuous and circularly symmetric
appearance. The NPS for reconstruction from 120 views
interpolated from 30 views by PS interpolation (Fig. 5(c)) is
seen to be quite non-uniform, a hybrid of the discrete spokes of
the 30-angle reconstruction and the more uniform appearance
of the 120-view reconstruction. The NPS for reconstruction
from 120 views interpolated from 30 views by CST/ZP
interpolation (Fig. 5(d)), on the other hand, is seen to resemble
the 120-view NPS quite closely, being esentially continuous
and circularly symmetric.

IV. DISCUSSION AND CONCLUSIONS

The differences between the CST/ZP and periodic spline
interpolation approaches emerge most clearly in the white
noise case discussed above. Here we saw that CST/ZP
interpolation results in a curve with constant variance at all
points (a factor of (2K -+ 1)/N times the variance in the
original measured samples), and having a covariance function
that depends only on the distance z — 2’ between two points.
Put simply. if the noise in the measured samples is uncorrelated

and wide-sense stationary, then the noise’in the interpolated

curve is also wide-sense stationary. Naturally, the noise does
not remain uncorrelated. The situation is quite different for
periodic spline interpolation. Here we saw that the variance
remains equal to the variance in the original samples only at the
interpolated points corresponding to those samples, and that it
falls to a minimum at the midpoint between two such samples.
Moreover, it was observed that the covariance function does
not simply depend on the distance  — z’ between two points
but depends also on the positions of the two points within their
respective intervals between measured samples. Thus though
the noise in the measured samples may be uncorrelated and
wide-sense stationary, the noise in the curve interpolated by
periodic spline interpolation is neither.

It is well known that when a stationary process is input to a
linear, shift-invariant system, the output process is stationary
as well [19]. Both CST/ZP and PS interpolation can be shown
to involve linear, shift-invariant operations on the data, yet we
have seen that given uncorrelated, stationary white noise in the
measured samples, CST/ZP interpolation yields a stationary
curve and PS interpolation does not. How do we explain this
apparent paradox? The answer lies in the fact that the set
of measured samples represents a discrete stationary process
while the result of interpolation is a continuous process, and
one must take care in comparing them. Systems theory makes
no claim about the ability of a linear, shift-invariant system to
turn a discrete stationary process into a continous one. Indeed,
if the original discrete process is viewed in the continuous
domain it is not at all stationary: the variance falls to zero in
the gaps between measured samples. What is truly surprising,
then, is not that periodic spline interpolation fails to produce
a stationary continuous process from the stationary discrete
samples, but rather that CST/ZP interpolation succeeds in
doing so.

The decision to use one approach or the other for
the interpolation of additional angular views in few-view
tomography should take into consideration the particular
requirements of the study being performed. Given that the
interpolatory accuracy of the two approaches is generally
comparable, at first glance it would seem that the variance-
reducing properties of the periodic spline interpolation might
be preferable. However, this comes at the cost of having widely
varying variance levels in neighboring projections, as well as
non shift-invariant covariance. These non-uniformities do not
noticeably affect the resulting image quality if one reconstructs
directly from the interpolated sinogram and thus periodic
spline interpolation may be appropriate if the images are only
to be inspected visually, and particularly if the task involves
the examination of relatively large structures. If, however,
one seeks to perform any sort of principled smoothing on
the projections or quantitation on the reconstructed image
that requires knowledge of the statistical properties of the
projections, then the stationarity-preserving properties of
CST/ZP interpolation may be the best choice.

CST/ZP interpolation may also be the best choice if the
task involves the detection of small objects. As mentioned
in Section II,.the noise properties of reconstructed images,
as characterized by a noise power spectrum (NPS), greatly
influence the detectability of small objects [16]. We examined
the NPS of images reconstructed after sinogram interpolation
by CST/ZP and PS and found the CST/ZP NPS to be much
more similar to the NPS of images reconstructed from a
full complement of 120 original views than was the spline
NPS. Indeed, the spline NPS demonstrated the existence of
non-uniform angular correlations that could potentially hinder
detection tasks.

Finally, the ability of CST and ZP interpolation to reduce
the variance in the interpolated curve by the factor (2K + 1) /N
relative to the variance in the measured samples deserves
comment. This is simply an implicit exploitation of the
ability to achieve noise reduction through oversampling and
filtering [20, Ch. 5], and the mechanism is easiest to appreciate
in the case of zero-padding interpolation for stationary white
noise. The DFT of Eq. 3 has N terms, corresponding to
frequencies out to k = £N/2 for N evenor k = £(N — 1)/2
for N odd. In Eq. 4, however, we see that all DFT components
corresponding to frequencies |k| > K are explicitly set equal
to zero, because g(z) is assumed to be bandlimited (at least
approximately) to frequency K. However, if the measured
samples are corrupted by white noise, then their DFT can
be seen as the sum of the true DFT and the DFT of the
noise process, which has contributions at all N frequency
components. Zeroing out all but 2K + 1 of these would
thus be expected to reduce the noise magintude by the factor
(2K +1)/N.
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Abstract

The ability to reconstruct high-quality tomographic images
from a smaller number of projections than is usually used
could reduce imaging time for many nuclear-medicine studies.
This would particularly benefit studies such as cardiac SPECT
where patient motion during long acquisitions can lead to
motion artifacts in the reconstructed images. To this end. we
have investigated sinogram pre-processing techniques designed
to enable filtered backprojection (FBP) to produce high-quality
reconstructions from a small number of views. Each
projection is first smoothed by performing roughness-penalized
nonparametric regression using a generalized linear model that
explicitly accounts for the Poisson statistics of the data. The

|

i
H

resulting fit curves are natural cubic splines. After smoothing,
additional angular views are generated using periodic spline
interpolation, and images are reconstructed using FBP. The
algorithm was tested on data from SPECT studies of a cardiac
phantom placed at various radial offsets to enable examination
of the algorithm's dependence on the radial extent of the object
being imaged.

I. INTRODUCTION

In routine nuclear-medicine tomographic studies, there
is usually a tradeoff between image quality and imaging
time. Increasing the number of angular views acquired, the
number of counts per view. or both will generally improve
image quality but will also lengthen imaging time. In general,
Concerns about image quality take precedence over concerns
about imaging time. However, in studies where the patient
must assume an awkward or uncomfortable position, long
acquisition times can potentially lead to patient motion and
thus to motion artifacts in the reconstructed images. One way
o reduce imaging time without significant sacrifice of image
quality is to use a continuous acquisition mode. in which the
time wasted in moving the camera between views is eliminated.
However, continuous acquisition is not recommended for some
of the studies most plagued by motion artifacts, such as gated
cardiac SPECT. In such studies, reducing imaging time must be
accomplished either by reducing the number of angular views
or by reducing the number of counts per view. In this paper, we
focus on the first approach, investigating algorithms tailored to
generate diagnostically useful images from a smaller number
of angular views than is usually used while holding the number
of counts per view constant.

One strategy for reconstructing acceptable images in
few-view tomography is to incorporate into the reconstruction
process as much prior information as possible about the
expected image. For instance, constraints regarding the
size [1], symmetry properties [2], or even the mean [3] of the
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expected image may be used. However, this approach generally
leads to iterative algorithms involving multiple reconstruction
and reprojection steps that are computationally intensive and
subject to concerns regarding convergence and regularization.
Moreover, the incorporation of prior information may involve a
subjective and time-consuming operator-dependent step. These
drawbacks are generally well justified by the resulting image
quality in extreme situations involving reconstruction of a fairly
complex object from 10 or fewer projections, where it is hardly
possible to generate acceptable images without incorporating
prior information. However, our interest is in more moderate
situations. such as reconstruction from 60 or 30 views when
120 might normally be used, and in these situations. a more
computationally efficient, fully automatic, robust algorithm
may be preferable. For these reasons, we focus in this work
on the development of algorithms for few-view reconstruction
involving sinogram pre-processing followed by reconstruction
by filtered backprojection (FBP).

In the absence of additional a priori constraints about the
object being imaged. the minimum number of angular views
required to produce an accurate tomographic reconstruction
of a given object using FBP is dictated by two factors. First.
the angular sampling of the object’s sinogram must satisfy the
Nyquist sampling condition. Absent this. any reconstruction
is doomed to suffer from angular aliasing artifacts. Second,
the number of angular samples must satisfy FBP’s implicit
assumptions about the density of angular sampling. It is well
known that FBP reconstructions from a small number of
angular views are degraded by prominent star-shaped artifacts.
These two conditions are not in general equivalent, as can
be appreciated most keenly when considering the case of
imaging a circularly symmetric object. In this instance, a single
projection view is sufficient to satisfy the Nyquist sampling
condition. while a FBP reconstruction from this single view
would be an uninterpretable set of parallel streaks. Indeed,
Brooks er al. have shown that for a circularly symmetric
object imaged with N bins per projection, a minimum of
~ 1.17 N/4 projections must be acquired over 180° to produce
an essentially artifact-free reconstruction using FBP [4].

The Nyquist condition is the more fundamental of the
two sampling requirements discussed above, because when
it is satisfied by a number of samples less than the number
required by the reconstruction algorithm, it is in principle
possible to interpolate exactly the additional views needed.
This is only strictly true in the absence of noise, of course,
a condition that rarely obtains in emission tomography. In
the presence of noise, angular interpolation usually leads to
severe circular artifacts, because the noise process is rarely
if ever bandlimited to the Nyquist frequency of the samples.

0018-9499,/99$10.00 © 1999 IEEE
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However, by smoothing each projection prior to interpolation.
the noise-encendered interpolation artifacts can be effectively
eliminated. " While simple linear. shift-invariant smoothing
filters. such as a Hanning window. lead to reasonable results.
we opted to explore a more sophisticated smoothing approach
that makes better use of the information contained in the
data. The approach we chose was roughness-penalized
nonparametric regression using an explicit Poisson statistical
model [5], which leads to fit functions that are natural cubic
splines, piecewise cubic polynomials that are continuous up to
and including the second derivative and satisfying the so-called
natural boundary conditions. While this approach is similar
in spirit to the information-weighted splines of Fessler [6].
the use of the explicit Poisson model in the present case leads
to a rather different, iterative algorithm. Moreover. rather
than choosing the smoothing parameter a priori, we have
implemented an automatic algorithm for determining it. based
on the principle of cross-validation and adapted appropriately
for Poisson-distributed data. The subsequent interpolation of
additional views is also performed using splines. this time
satisfying periodic boundary conditions. Image reconstruction
then proceeds as usual. with due recognition of the fact that the
sinogram has already been smoothed.

II. METHODS

A. Interpolation of angular views

Consider a tomographic acquisition that yields a
two-dimensional discrete sinogram p(€,.0m). Where &,.
n = 1.....N.is the projection bin and 0m. m = 1.... M.

is the projection angle. The number A/ of angular samples is
assumed to satisfv the Nyquist condition at least approximately
(i.e., the energy of the angular spectrum beyond the Nyquist
frequency is assumed to fall below some small threshold).
We wish to increase the number of angular samples to KA,
where K is an integer and K Al is large enough to eliminate
star artifacts from an FBP reconstruction. by interpolating
additional views between the measured ones. To do this.
the sinogram is viewed as a set of 1D sampled functions
of projection angle, each labeled by a projection bin .
with the samples denoted by pe, (&w). Then continuous
one-dimensional (1D) interpolating curves pg_ (¢). where the
superscript 7 indicates interpolated. are fit to each of these
sampled functions and resampled to obtain the additional
angular views.

Ideally, a periodic interpolation method should be chosen
in order to make use of the inherent periodicity of the angular
samples. In image reconstruction, periodic interpolation
has primarily been studied in the context of direct Fourier
reconstruction, where there is a need to interpolate from a
polar to a Cartesian grid in the Fourier space of the image
function while exploiting the periodicity of the azimuthal
samples [7-9].  Fewer studics exist of interpolation in
sinogram space [l, 10], though many of the Fourier-space
interpolation techniques can be readily applied in sinogram
space, including simple schemes such as nearest-neighbor

and linear interpolation with periodic boundary conditions as
well as the more complex circular sampling theorem (CST)
and zero-padding approaches [11-14]. Despite its simplicity.
zero-padding interpolation is quite accurate: indeed. 1t can
be shown [15] that it is mathematically equivalent to CST
interpolation and that both are exact when interpolating
bandlimited, periodic functions whose samples satisty the
Nyquist condition. Because ZP interpolation exploits the
efficient FFT algorithm, it has a much lower computational
burden than CST interpolation. and is thus to be preferred in
this context.

Despite.the theoretical exactness of CST/ZP interpolation
when the Nyquist condition is satisfied. the two methods are
quite sensitive to mild violations of the criterion, giving rise
to the well-known Gibbs oscillations that radiate widely from
sharp edges [16]. This shortcoming prompted us to explore
yet another interpolation technique based on cubic splines
that while not theoretically exact is known to be very accurate
and quite robust in the face of violations of the Nyquist
condition. Our confidence in the use of splines was bolstered
by studies we performed [17] of 1D interpolation in which
samples of known analytic functions representing the angular
variations of projections of Shepp-Logan-like and breast
phantoms [18] were interpolated at intermediate points and
the interpolated values then compared to the known values at
those points. In these tests, spline interpolation was found to
have a statistically significant lower root-mean-squared error
than linear interpolation or CST/ZP interpolation for virtually
all sampling intervals.

A periodic cubic spline is a curve comprised of generally
different third-order polynomials between each pair of
known abscissas ¢, and @,+1. with the overall curve being
continuous up to and including the second derivative at each
abscissa [19]. Naturally. in the case of an interpolating spline
(as opposed to a smoothing spline), the curve PE..<O) is also
constrained to pass through the known ordinate values pg,, (dm)
at each abscissa ¢,,. The spline can be represented as

P () = am + bmo + Cn&® /2 + dm /3. (h

for o € [@..,®m+1), wherem = 1,... .M. The process of
fiting an interpolating spline is then tantamount to solving a
set of linear equations for the defining coefficients an, bm, ¢m,
and d,, in each interval (@, @m+1] such that the continuity and
interpolation conditions are satisfied. For a periodic spline, the
coefficients must also satisfy periodic boundary conditions.

In order to illustrate the effects of this interpolation
and to motivate our approach to mitigating noise, we have
reconstructed images from simulated projections of a numerical
phantom. The true phantom is shown in Fig. 1(a). In Fig.
1(b), the phantom is shown reconstructed by ramp-filtered
FBP from 120 noiseless angular views. In Fig. 1I(c), a
reconstruction from 30 views, we observe the star-shaped
artifacts discussed in the introduction. Figure 1(d) illustrates
the results of ramp-filtered FBP reconstruction of the phantom
after interpolating from 30 to 120 angular views using periodic
spline interpolation. We see that the star-shaped artifacts have




Figure 1@ Reconstrucuons of a numencal phantom. (a) True
phantom. (b) Reconstruction by ramp-filtered FBP from 120 noiseless
angular views. (C) Reconstruction by ramp-filtered FBP from 30
noiseless angular views. (d) Reconstruction by ramp-filtered FBP
after interpolation from 30 to 120 noiseless angular views.  (€)
Reconstruction by Hanming-filiered FBP from 30 angular views with
Poisson noise. () Reconstruction by Hanning-filtered FBP after
interpolation from 30 angular views with Poisson noise to 120 views.

been essentially eliminated. In Fig. i(e). we show the results
of a Hanning-filtered reconstruction from 30 angular views
with Poisson noise (125.000 total counts). The star-shaped
packground artifacts are still present and we observe the image
to be somewhat noisy. Finally. in Fig. 1(f). we show the
results of a Hanning-filtered reconstruction of the phantom
after interpolating from 30 to 120 views. We observe that the
star-shaped artifacts have been eliminated as before, but that
circular noise artifacts have appeared in the image.

"B. Smoothing

While the results of spline interpolation in the noiseless
case (Fig. 1(d)) are encouraging, the poor reconstruction in
the noisy case (Fig. 1(f)) indicates that prior smoothing of the
sinogram may be necessary if spline interpolation of angular
views is to succeed in the presence of noise. Rather than simply
apply a linear, shift-invariant filter to the noisy projection data,
we decided to explore a more principled statistical approach
using roughness-penalized nonparametric regression based on
a generalized linear model (GLM) [5] that explicitly accounts
for the Poisson nature of the SPECT data. '

1) Nonparametric regression using a GLM

Regression analysis with a single explanatory variable
considers the problem of fitting a curve 10 a set of data pairs
(Yiz). (i=1.... ., N), where the Y] are the measured values
of the quantity of interest and the z; the corresponding values
of the explanatory variable. The variation in the Y7 is assumed
{0 have lwo components: a systematic component captured
by a vector of predictors g; that depends on the z;, and a
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random component specifying the distribution of the ¥; given
g,. In classical linear regression, for example, the systematic
component is assumed to be of the form 8; = az; + b, and the
Y, are assumed to be normally distributed about the 6,. ie.
Y. ~ N(#;.0%). In general, maximum-likelihood methods are
used 1o estimate regression curves, and in the case of classical
linear regression. the maximum-likelihood estimates of a and b
are easily shown to be those that minimize the sum of squares
SN (Y; - azi - b)* [20).

Nonparametric regression using a GLM relaxes both
of the assumptions of classical linear regression.  First, it
eliminates the assumption that the predictors 6; depend
on the explanatory variable in a simple parametric way.
representing them instead as an arbitrary function of the
explanatory variables: 6; = g(z;). This would seem to
complicate the problem immensely, turning a relatively
straightforward finite-dimensional estimation problem into an
intractable infinite-dimensional one. However, in practice the
problem is made tractable by adding the further constraint
that the estimated curve g(z) be smooth and enforcing this
constraint by penalizing the likelihood with a term of the
form [ g"(z)*dz. If the unpenalized likelihood depends on
g(z) only through its values g(z;) at the measured points z;,
i — 1.....N (which is usually the case), it can be shown
that the minimizer of the penalized likelihood is necessarily
a natural cubic spline [5]. These are simply cubic splines
that are constrained to be linear outside the set of measured
points, and like the periodic splines discussed above. they can
be specified by a finite number of coefficients. (In this sense,
roughness-penalized nonparametric regression does vyield a
parametrized curve, but given that there are at least as many
parameters as observations, the spirit is rather different from
that of standard parametric techniques.)

Nonparametric regression using a GLM also relaxes the
assumption that the data are normally distributed in favor of the
much broader class of exponential distributions, which have
probability densities of the form

yifi — b(0:)

+ c(yi @) | - (2)
p c(y ))

pyi | 6i,0) = exp (
where 6; is the so-called natural parameter of the exponential
family and ¢ is a scale parameter {21]. This family comprises
many well-known distributions, each corresponding to a
different choice of the functions b and c¢. Of particular
interest to emission tomography is the choice b)) = e,
o =1, clyi, @) = —log(yi!), which corresponds to a Poisson
distribution with parameter A; = ef . If a nonparametric
dependence 6; = g(z:) of the predictor on the explanatory
variables is assumed, the log-likclihood of N independent
observations Y; drawn from a Poisson density is given by

N
tg 0) = S (Yig(z:) — explg(z)] — log(¥ih)). ()

1=1

The goal of roughness-penalized nonparametric regression
is to estimate the curve g(z) that maximizes this log-likelihood
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subject to the penalty [ ¢ (z)*dz. i.e. to maximize

N 1 " oN2
S (rigle) - esplo(@]} - o [ o'’z @
=1

where terms independent of g have been dropped and where a
is the so-called smoothing parameter, to be discussed below.
Note that g(z) here represents an estimate of the log of the
Poisson parameter X(z). As mentioned above, this expression
can be shown to be maximized by a natural cubic spline and it

o be shown that for natural cubic splines. the penalty
-1 g”(z)gdr = —%agTKg, where g is an N-element
veetor with g; = g(zi). and K is an N'x\' matrix determined
by the spacing of the measurement points z,. Because the
n;nural cubic spline interpolating any specified set of points
glx,) is unique, finding g(z) is thus tantamount to finding

g [5].

As is traditional in GLMs [21], we use Fisher scoring to find
the g that maximizes Eq. 4, which yields the following iterative
update equation

can als

gt = (W + o)~ 112, (5
where z is an N-element vector with, for Poisson data,
components

_ Y —exp (gf“)
:f” :gfk)—%——‘ (6)

xp ()

11" is a diagonal matrix with, for Poisson data. entries

W, = exp (gfk)). and the superscript (¥) refers to the

kth iteration. The initial estimate g'® is chosen to have

components ng) = log{max(}i.€)}. where € 1s a small
positive constant introduced to avoid computing log(0).
Iteration continues until the sum of the absolute changes in the
components of g from one iteration to the next falls below
a prespecified threshold. While this would seem to be a very
computationally intensive procedure. the banded structure of
some of the matrices involved can be exploited to keep the

algorithm to O(N).
2} Choice of the smoothing parameter

The choice of the smoothing parameter a profoundly

influences the appearance of the fit curve g(z). for o
determines the relative influence of the two terms in
the penalized-likelihood expression, the first rewarding

eoodness-of-fit to the data, the second rewarding smoothness.
A small value of a leads to a ragged curve while a large value
of o leads to a smooth curve. In most applications, a value
between these two extremes is desirable. and while this can
be found through trial and error for most datasets. a more
principled and automatic approach would clearly be preferred.

One such automatic approach to choosing the smoothing
parameter is based on the principle of cross validation (CV),
which has been discussed in the context of image processing by
Galatsanos and Katsaggelos [22]. The approach is grounded in

the assumption that the choice of a should vield a fit curve gz
that accurately predicts the outcomes of further observations.
Remarkably, the predictive accuracy of the fit curve can be
quantified solely on the basis of the fit values and the measured
data [23). This so-called CV score can be expressed as

L& (v - a(z:) 2

CVia) = = —_— . 7)

@=75 ;{1— Aala) "

where A;; are the diagonals of the hat matrix 4. which links

the values of the estimate at the measured points to the values

of the observations at those points: g = A(a)Y. The value

of a minimizing this curve is considered optimal. and can

generally be found fairly quickly using a golden section search
minimization approach.

The CV score of Eq. 7. based on a residual sum of squares.
is more appropriate for normally distributed data than for the
more general class of distributions encompassed by GLMs. For
GLMs, we follow O’Sullivan er al. [24].who propose replacing
the residual sum of squares with the generalized Pearson \:
statistic, which for Poisson distributed data is given by

1 o (Y, — explg:))?/ exp(g))
F Z (1 - -411(0))2 ' (8)

CVoLm(a) =

1=1

where the A;; are the diagonal elements of a matrix 4 given
by (W + oR)™'1". where 11" is as above. evaluated after
the final iteration. Calculating the CV score would seem to
be an O(N?) operation. for computing the matrix - involves
inverting the matrix (W + ah’). However, two facts work
in our favor: first. (W1~ + aA’) can be manipulated to take
advantage of band structures and second. only the diagonal
elements of A are needed. Hutchinson and de Hoog [25] have
developed an algorithm that allows the diagonal elements of
the inverse of a band matrix to be computed in O(/N'). and this
is the approach we have used.

C. Data Acquisition and Processing

In order to examine the response of the algorithm to
increasingly difficult interpolation tasks. we imaged a compact
object placed at increasing radial offsets. This increases the
bandwidth of the angular functions at each projection bin.
Specifically, we acquired projections of a Data Spectrum
ventricular phantom placed at five different radial offsets
from the COR: 0, 5, 9, 12, and 15 cm. The phantom was
filled with 121 MBg (3.27 mCi) of Tc-99m, contained a
l-cm defect insert. and was not placed within a water-filled
torso phantom. We imaged this phantom with a Picker
3000XP three-headed SPECT system fit with low-energy,
high-resolution, parallel-hole collimators, acquiring studies
containing 120 angular views over 360°. We used a 25-cm
radius circular orbit and step-and-shoot mode for all of the
acquisitions; each head acquired to a 128x128 pixel image,
though we preserved only the 32 slices spanning the phantom.
A total of about 500,000 counts was collected. From this data
we extracted 3D sinograms corresponding to 15, 30. 60, and
120 views, respectively. Thus we had 20 different sinograms,




corresponding to the 20 possible combinations of radial offset
and number of angular views. We reconstructed images from
these 20 sinograms using four different processing techniques:

1. No pre-smoothing of the sinogram and slice-by-slice
reconstruction from available views by FBP using a
Hanning filter (cutoff=0.8).

2. No pre-smoothing of the sinogram. spline interpolation
from the available views to 120 angular views, and
slice-by-slice reconstruction by FBP using a Hanning
filter (cutoff=0.8).

3. Roughness-penalized nonparametric regression
smoothing of the sinogram and slice-by-slice
reconstruction from the available views by FBP using a
ramp filter (cutoff=1.0).

4. Roughness-penalized nonparametric regression
smoothing of the sinogram. spline interpolation from
the available views to 120 views. and slice-by-slice
reconstruction by FBP using a ramp filter (cutoff=1.0).

The particular application of the nonparametric regression
technique to this data requires some explanation. The
projection data for each of the radial offsets is a 3D sinogram
of 128 bins. 32 slices. and 120 angles. While the smoothing
technique was applied to each projection in each slice
independently. we decided it would be wise to use the same
smoothing parameter for all the projections. To do otherwise
would have invited inconsistencies in the smoothed sinogram
likely to produce streaks and other artifacts in the reconstructed
images. At the same. we wished to select the smoothing
parameter to be applied to the data using some form of
cross-validation. The solution was to string together all of the
ID projections in the complete 3D sinogram into a single,
long 1D function, and to find the smoothing parameter that
minimized the CV score for that function when smoothed by
the roughness-penalized nonparametric technique. This value
of a was then used in smoothing each of the projections in this
sinogram individually.

III. RESULTS

For ease of comparison and simplicity of presentation, we
have grouped the reconstructed images by the number of angles
in the original sinogram, and we show in Fig. 2 the results for
only three of the radial offsets: 0. 9, and 15 cm. These three
suffice to illustrate the trends observed. For each combination
of number of angles and radial offset we show the results of
reconstructing by use of each of the four techniques outlined
above.

We observe that reconstructions from available views
without pre-smoothing or interpolation display star-shaped
artifacts and a mottled appearance when the number of views
is small. Interpolation alone mitigates the star-shaped artifacts
but leads to severe circular artifacts. particularly in the case of
a small number of views and a large radial offset. Smoothing
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alone reduces the noise visibility but has little effect on the
star-shaped artifacts. The combination of smoothing and
interpolation still produces circular interpolation artifacts
in the case of a large radial offset combined with a small
number of original views, but these are less severe than when
interpolation alone is used. Overall, though, visually appealing
reconstructions result for less challenging combinations of
radial offset and number of views, including as few as 15
angles in the 0-cm offset case.

While Fig. 2 demonstrates that the algorithms described
can produce visually satisfactory reconstructions of the cardiac
phantom from relatively small numbers of views, the most
critical question is whether this can be achieved without
hindering the detection of the small perfusion defects that is
usually the goal of cardiac SPECT imaging. To answer this
question we generated bullseye plots {26] from each set of
reconstructions. To construct these plots, one starts with a
set of short-axis slices of the left ventricle. which have the
appearance of annuli. Each slice is mapped to a different
ring of a dartboard-like grid divided into radial and azimuthal
sectors, with the apex corresponding to the innermost ring
(the bullseye) and the base corresponding to the outermost
ring. The value of the integrated actvity in a finite angular
sector of each annulus is mapped to the appropriate azimuthal
sector of the dartboard. If the reconstruction of the ventricle
contained a uniform distribution of activity, then the bullseye
plot would be uniform. But if the activity were non-uniform,
for instance if there were a perfusion defect having lower
activity than surrounding areas. then the appropriate sector
of the dartboard would appear darker than the surrounding
area. The bullseye plots corresponding 1o reconstructions
from few-view sinograms that have been processed by the
spline smoothing and interpolation techniques are shown in
Fig. 3. along with bullseye plots corresponding to 120-angle
sinograms reconstructed without spline processing.  Our
phantom contained a l-cm perfusion defect insert. which
produces a depression that is well resolved in many of the
bullseye plots.

It is clear from these bullseye plots that the defect remains
detectable for as few as 15 angles in the case of the 0-cm offset.
as few as 30 angles in the case of the 9-cm offset, and as few
as 60 angles in the case of the 15-cm offset. These findings
correlate well with the visual appearances of the images in Fig.
2. The plots in which the defect is not visible correspond to the
images in which severe interpolation artifacts are evident.

IV. DISCUSSION AND CONCLUSIONS

We have presented a sinogram pre-processing technique
combining spline-based smoothing and interpolation
that enables FBP to produce high-quality tomographic
reconstructions from a smaller number of views than is usually
used. The technique 1s applicable to situations where the
number of views needed to satisfy the Nvquist condition on
the sampling of the angular part of the sinogram is less than
the number of views required by FBP to produce artifact-free
images. In this situation, we first smooth each 1D projection
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Figure 2. A representative slice of a cardiac phantom 1maged at three different radial offsets and reconstructed with use of four different

pre-processing approaches from 15, 30. 60. and 120 projection angles.

using a roughness-penalized nonparametric regression
approach based on a GLM that explicitly models the Poisson
statistics of the measured data. One-dimensional periodic
interpolation splines are then fit in the angular direction and
resampled to generate additional views. Ramp-filtered FBP is
then applied to the interpolated sinogram.

Because it is not possible to derive closed-form
expressions for the Nyquist and FBP sampling requirements
of non-circularly symmetric objects, we have tested the
limits of the algorithm by conducting an experimental
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investigation performing reconstructions from various numbers
of projections of a cardiac phantom placed at various radial
offsets from the center of rotation of a SPECT system. The
ability of the algorithm to produce visually appealing images
that still capture small perfusion defects breaks down for large
radial offsets combined with small numbers of starting views.
This corresponds to the situation when the number of initial
angular samples strongly fails to satisfy the Nyquist condition
for some or all projection bins and thus the assumptions
underlying the approach are violated.
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Figure 3. Bulleye plots for the cardiac phantom placed at various radial offsets and for four different numbers of projection angles. The
reconstructions from 15, 30, and 60 angles used the nonparametric regression smoothing technique followed by periodic spline interpolation to
120 views prior to reconstruction by ramp-filtered FBP. The reconstructions from 120 angles simply entailed Hanning-filtered FBP.
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Abstract

We develop and investigate an approach to tomographic image reconstruction in which nonparametric
regression using a roughness-penalized Poisson likelihood objective function is used to smooth each pro-
jection independently prior to reconstruction by unapodized filtered backprojection (FBP). As an added
generalization, the roughness penalty is expressed in terms of a monotonic transform, known as the link
function, of the projections. The approach is compared to shift-invariant projection filtering through the
use of a Hanning window as well as to a related nonparametric regression approach that makes use of
an objective function based on weighted least squares (WLS) rather than the Poisson likelihood. The
approach is found to lead to improvements in resolution-noise tradeoffs over the Hanning filter as well
as over the WLS approach. We also investigate the resolution and noise effects of three different link
functions: the identity, square root, and logarithm links. The choice of link function is found to influence
the resolution uniformity and isotropy properties of the reconstructed images. In particular, in the case of
an idealized imaging system with intrinsically uniform and istropic resolution, the choice of a square root
link function yields the desirable outcome of essentially uniform and isotropic resolution in reconstructed
images, with noise performance still superior to that of the Hanning filter as well as that of the WLS

approach.
Keywords

Image reconstruction, sinogram smoothing, nonparametric regression, nonuniform resolution

I. INTRODUCTION

Fully iterative, statistical image reconstruction algorithms represent the most principled
solution to the emission tomography image reconstruction problem, and steady improve-
ments in computing power, the development of more efficient algorithms, and a deeper
understanding of convergence and regularizing penalties have begun to win a place for
these algorithms in the clinical setting. Nonetheless, perhaps because of its computational
efficiency, straightforward filtered backprojection (FBP) using an apodized ramp filter is
still widely used. 7

A significant drawback of FBP using a spatially invariant filter is that it treats all of
the projection data equally, neglecting the data’s inherently nonstationary statistics [1].
Conversely, one of the principal advantages of the fully iterative reconstruction methods is
their explicit modeling of the projection data statistics. Fessler [1] has argued that much
of this statistical benefit, with little of the computational cost, might be captured by prin-

cipled one-dimensional (1D) smoothing of each projection followed by reconstruction using
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unapodized FBP. In this vein, he proposed fitting to each projection a curve minimizing a
roughness-penalized, weighted least squares (WLS) objective function in which the weights
were inversely proportional to the data values (he also included a factor reflecting differ-
ences in detector efficiency and attenuation, which we disregard in this work in order to
focus exclusively on statistical variability) [1]. This is a form of roughness-penalized non-
parametric regression (NPR), in which the usual assumptions of classical linear regression
are relaxed to allow for more general curves to be fit [2].

The WLS component of the objective function is optimal only for normally distributed
data with unequal variances. Whereas randoms-corrected positron emission tomography
(PET) data may be approximately normally distributed, unmodified PET and single-
photon emission computed tomography (SPECT) data generally follow a Poisson distri-
bution. For this reason, we recently introduced a roughness-penalized NPR projection-
smoothing technique based on an explicit Poisson likelihood model for use in these situa-
tions [3]. In the present paper, we describe this approach in greater detail and present an
important generalization involving the freedom to choose the so-called link function of the
NPR model. As we shall see, different link functions induce slightly different resolution-
noise tradeoffs in reconstructed images but more importantly lead to significantly different
resolution uniformity and isotropy properties.

When images have uniform resolution, it is often characterized by a single, shift-invariant
point-spread function (PSF) reflecting the response of the system, including the recon-
struction algorithm, to an impulse input. When resolution is nonunifofm, however, a
generalization of the PSF concept is needed to reflect the shift-variant and possibly object-
dependent nature of the resolution. Such a generalization is provided by the concept of a
local impulse response (LIR) [4] function, which is the system response to impulses added
to particular positions in particular objects. In this work, we use the term nonuniform res-
olution to mean that the breadth of the LIR function, and specifically of its half-maximum
contour, varies as a function of position within the image and possibly also as a function
of the object being imaged. We use the term anisotropic resolution to mean that the LIR
functionis at some or all image points are not circularly symmetric, which indicates that

resolution is different in different directions. The presence of nonuniform and anisotropic
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image resolution, while arguably desirable in some contexts, is often considered detrimen-
tal to image quality. Nonuniform resolution means, for instance, that identical lesions
in different parts of the image would appear to have different sizes; anisotropic resolu-
tion means, for instance, that circular structures in the object would have an elliptical or
otherwise distorted appearance in the image.

The factors affecting the uniformity or isotropy of reconstructed tomographic images
can be divided into two broad categories: those intrinsic to the imaging system and those
related to the reconstruction algorithm. In order to focus on the factors pertaining to re-
construction algorithms, the imaging system modeled in this work will be assumed to have
intrinsically uniform and isotropic resolution properties. Among real emission tomography
systems, PET comes closest to satisfying this assumption, especially for objects confined
to the central region of the field of view. SPECT systems generally have intrinsically
depth-dependent spatial resolution. Even in the face of projection data with intrinsically
uniform and isotropic resolution, different reconstruction algorithms have the ability to
produce images with different resolution properties. In a continuous formulation, simple
FBP, with its shift-invariant filtering, naturally leads to images with uniform and isotropic
resolution,® but, in general, statistically based approaches produce images with nonuni-
form, anisotropic resolution. Indeed, Fessler and Rogers have shown both analytically and
empirically [4] that in emission tomography, fully iterative, penalized WLS and Poisson
likelihood reconstruction approaches with a quadratic penalty lead to a particularly un-
desirable kind of nonuniform resolution in which resolution is better in low-count than in
high-count areas. Moreover, these approaches also lead to anisotropic resolution that can
distort structures in reconstructed images. Fessler and his collaborators have shown that
it is possible to design object-dependent penalties for fully iterative approaches that lead
to essentially uniform [4] and isotropic 7] resolution, but the process is somewhat involved

and adds another computationally intensive step to the reconstruction process.

'The usual discretization of the FBP algorithm [5, Ch. 8] can introduce some slight resolution nonuniformities
into reconstructed images. Guédon and Bizais [6] have proposed an alternative implementation, involving a
filtering kernel that depends on the projection angle, that retains the shift-invariance of resolution in the discrete
reconstructed image. Nonetheless, because the deviation from resolution uniformity in standard FBP is small
compared to that arising when making use of some of the projection smoothing approaches under consideration,

we have used the standard discretization of FBP throughout.
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We will demonstrate in this work the ability to control resolution uniformity and isotropy
properties through the choice of the link function in the nonparametric regression sino-
gram smoothing method, and we will highlight the ability to achieve essentially uniform
and isotropic resolution through the choice of a square-root link function. We will also
compare the resolution-noise tradeoffs achievable with the proposed Poisson likelihood-
based objective function with those obtained by the use of two other sinogram smoothing
approaches: simple Fourier-domain apodization windows and roughness-penalized non-
parametric regression based on a WLS rather than a Poisson likelihood objective function.
Statistical variability will be the principal physical deviation from ideal projection data
that is considered. If the proposed approach is found to yield significant advantages over
these alternative 1D approaches, it will be extended in future work to incorporate cor-
rections for additional physical factors such as scatter, attenuation, and depth-dependent
blurring, by the means discussed in Sec. 1I, and comparison then made to fully iterative

approaches.

I1I. THEORY

A. Model and Assumptions

We begin with a projection model similar to that of Fessler [1], although with a few
important differences with respect to the corrections applied to the measured data and
the resulting statistical distribution of the data. Let #(£,7) represent the two-dimensional
activity distribution in the object being imaged expressed in a Cartesian coordinate system
{¢, 77} that is rotated by angle ¢ relative to a fixed {z, y} coordinate system [8]. The Radon
transform of this activity distribution for angle ¢ is given by

+oo
(€)= / b€, m)dn, 0

o
where ¢ is known as the projection angle and & is known as the projection distance.

In general, this Radon transform is degraded by attenuation, blurring, and scatter. For
example, in SPECT with an attenuation map a(&,n), a possibly depth-dependent blurring
function k(®) (£, &', n), and a scatter contribution s()(€) to each projection, we can expréss

these degraded projections, which we denote simply p{®)(¢), as
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o= [ - [ / e e, ¢ n)df'] A(E,n, )dn + $9(E), @

o¢] oo

where

A(&,n, ¢) = exp {~ /noo a(§, n’)dn’} : (3)

Similar equations hold for PET, although in that case the attenuation factor does not
depend on 7, a detector efficiency factor should be added, and an additional additive term
r(9)(€) reflecting the contribution of random coincides should be added to Eq. 2.

In practice, one measures projections at a finite number of angles ¢;, 7 = 1,... , M,
equally spaced over 7 or 27, and each projection is sampled? at a finite number of projection
distances or bins &, 1 =1,... , N. We denote the measurement at projection angle ¢; and
projection bin &; as yz(j), and because the measurements exhibit statistical variability, they
will be regarded as realizations of random variables Yi(j ) having means ugj )= F {Y;(j )} =
pl%)(&;), where E {-} denotes the expectation.The distribution of these random variables

will be assumed to be Poisson, although the strategy discussed below can accommodate

other exponential-family distributions as well [9].3 As a point of notation, in what follows,

‘ . T

the vector y¥) = (ygj), . ,y%)) will denote the set of measurements at projection angle
T

¢; and the vector y = ([y(l)]T e [y(M)}T) will denote the concatenation of these

projection vectors into a single vector of measured data.

The goal in tomographic reconstruction is to estimate the activity distribution ¢, and
mére specifically some discrete approximation of it, from the measurements y. Let 8 =
(0,... ,9p)T denote the discrete approximation of ¢ that is to be estimated, where the
0, m = 1,..., P, are lexicographically ordered pixel values, with P being the total
number of pixels. Much work has been performed on the “direct” estimation of @ from y

Note that we are modeling the measurements as point samples of p{%s)(£). This will simplify the notation and
analysis to follow, although a relatively straightforward extension of the formalism would allow the measurements

to be modeled more accurately as integrals over the finite width of the detector elements, as in [1].
3The Poisson assumption is excellent for raw SPECT and PET data. PET measurements that have been

precorrected for random coincidences do not follow a strictly Poisson distribution. Fessler’s WLS objective function
[1] may be the best choice in that situation, although it is possible that the corrected PET data may be well
approximated by another exponential-family distribution, in which case the proposed penalized likelihood approach

would be most appropriate. The resolution of that question is beyond the scope of the present paper.
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by use of fully iterative algorithms such as maximum-likelihood estimation-maximization
[10], maximum a posteriori estimation [11], penalized WLS [12], and the like. These
approaches can in principle model and compensate for the attenuation, blurring, scattering,
and statistical variability discussed above. The results of these approaches are promising,
but the computational burden is high and many questions regarding regularization and
convergence remain unresolved. An alternative, “indirect” path to the estimation of 8 is
to estimate pi(j’gil (€) from yU) as best as one can independently at each angle ¢;, and then
to reconstruct the image by means of an algorithm such as FBP [1].

Direct estimation of pfjg;(g), compensating for noise, scatter, blurring, and attenuation
is an ambitious proposition, perhaps best handled by applying a sequence of corrections
to the projections. In this paper, we will focus on the first step of such a sequence, the
statistical problem of fitting smooth curves to the noisy measurements y) in order to
estimate p(?%)(£). Future extensions of the approach will focus on correcting the estimates
of p%)(£) for scatter, blurring, and attenuation in order to estimate pi(fgil(é). For example,
in SPECT, once estimates 5% (¢) of the p(%)(¢) are available, scatter could be corrected
for by subtracting estimates 5(%)(£) of the scatter functions, obtained either from scatter

- windows or from analytic scatter estimation techniques of the sort developed by Frey [13].
In the case of SPECT-like blurring that is depth-dependent but shift-invariant in any plane
parallel to the detector plane (i.e., when k(®)(£,€',n) in Eq. 2 can be written k(¢ (£—¢',9)),
the techniques of Metz and Pan [14,15] could then be applied to the projection data to
estimate the ideal projections. In fact, the approach proposed in this work could be
used to estimate the 5% (¢) from counts collected in the scatter window or to estimate
transmission sinograms for use in constructing attenuation maps when transmission data
has been acquired as well. Still, these extensions are beyond the scope of the present
paper, where we will focus exclusively on describing a method for the estimation of the
p'%)(€) from the noisy data y) and on assessing the noise and resolution properties of
images reconstructed by use of this method. |

Although it is not usually couched in terms of estimation theory, the most common
way to estimate p{®)(¢) from yU) in tomography is through the use of Fourier-domain

apodization windows. In this approach, the discrete Fourier transform (DFT) of each
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vector v is computed and the result multiplied by an apodization window such as a
Hanning or Butterworth filter (this is normally performed in concert with the multipli-
cation of the data by the ramp filter needed for accurate reconstruction) prior to taking
an inverse DF'T. The window suppresses the hi.ghest frequency components, presumed to
contain more noise than signal, and this process is equivalent to performing a convolution
of the data with a shift-invariant smoothing kernel. However, this kind of shift-invariant
filtering is optimal only for stationary data, whereas the noise in tomographic projections
is often quite nonstationary. A more sophisticated approach can be found in the work of
Benali et al. [16] and Pélégrini et al. [17,18], who apply to emission tomography projection
data a transformation of the form \/ylm + 3/8 , which changes the Poisson variables into
asymptotic Gaussian variables with variance 0.25. They then smooth the transformed
curve by use of a statistical technique known as the fixed-effect model. The similarities
and differences between this approach and ours will be discussed in greater detail in Sec.
V-B. In short, though, unlike the use of apodization windows and the approach just men-
tioned, the approach we propose explicitly models the Poisson nature of the projection
data statistics. The curves p(#:)(£) are estimated from y) by maximizing objective func-
tions that are derived using a statistical framework known as nonparametric regression

with a generalized linear model (GLM) [2], which we will now describe.

B. Nonparametric Regression with a Generalized Linear Model
B.1 Statistical Model

Regression analysis with a single explanatory variable considers the problem of fitting a
curve to a set of data pairs (y;, &), 7 =1,... , N, where the y; are the measured values of the
quantity of interest and the & the corresponding values of the explanatory variable.* The
variation in the y; is assumed to have two components: a systematic component captured
by a vector of predictors v; that depends on the ¢;, and a random component specifying
the distribution of random variables Y;, of which the y; are realizations, given v; [2]. In
classical linear regression, for example, the systematic component is assumed to be of the

*In the sections describing the nonparametric regression approach in general, we use the same variables £ and
y as in the sections dealing specifically with the tomographic reconstruction problem, although for notational

simplicity we omit the superscript ) that labels the projection angle in those sections.
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form t; = a&; + b, and the Y; are assumed to be normally distributed about the 1, i.e.,
Y; ~ N(;,0?), where o2 denotes the variance. In general, maximum-likelihood methods
are used to estimate regression curves, and in the case of classical linear regression, the
maximum-likelihood estimates of @ and b are eésily shown [19] to be those that minimize
the sum of squared differences 3% (y; — a& — b)?.

Nonparametric regression using a GLM relaxes both of the assumptions of classical
linear regression. First, it relaxes the assumption that the data are normally distributed
in favor of the broader class of exponential distributions, which have probability densities
of the form

Fris | ¥, 0) = exp (Qi/’_%?_@

Fel o)), (@)
where 1); is the so-called natural parameter of the exponential family and ¢ is a scale
parameter [9]. This family comprises many well-known distributions, each corresponding
to a different choice of the functions b and ¢. Of particular interest to emission tovmography
is the choice b(1;) = e¥', v = 1, c(y;, ) = —log(y;!), which corresponds to a Poisson
distribution with mean p; = e¥:.

Second, nonparametric regression using a GLM eliminates the assumption that the
predictors 1; depend on the explanatory variable in a simple, known parametric way,
relating them instead to an unknown, continuous function of the explanatory variable, ¢(£)
[2]. This kind of nonparametric model is clearly desirable in the smoothing of emission
tomography measurements, where the explanatory variable, &, is a spatial coordinate, and
there is no reason to assume that the projections have any particular functional form. The
most straightforward way to proceed is to connect this regression function (&) directly to
the means of the random variables (which are themselves related in a known way to the
predictors 1);) through the relation p; = ¢(&;). Then the estimate of the regression function
q(&) would be a direct estimate of thé curve of interest, which we denote p(£). However,
it is worthwhile to consider a more general formulation in which the regression function is

connected to some monotonic transform g(-) of the means of the random variables

9(1:) = q(&), (5)

where g(-) is known in the NPR literature as a link function. Defining h(-) = ¢~*(-), this
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can be rewritten

pi = hlg(&)]- (6)

It is important to appreciate that the taskv at hand is the estimation of continuous
regression function ¢(¢). The link function g¢(-) is specified as part of the model. Possible
choices of the link function include the identity link, g(u:) = ps, the logarithm link,
g(p:) = In(p;), and the square root link, g{u;) = /1.

For a given link function, the regression function ¢(§) is, in general, a transformation
of the actual curve of interest. For example, in the emission tomography application, our
interest is in fitting a curve p{%)(£) to the measurements y) at each projection angle
¢;. With the choice, for example, of the logarithm link g(x;) = In(u;), the estimate
7% (€) yielded by this framework is an estimate of the logarithm of the estimate p(%/)(¢)
of interest. Only for the identity link is the estimate g(%)(£) a direct estimate of p{%s)(&).

This generalization has important implications for resolution uniformity and isotropy
properties. As discussed below, the regression curves §(%) () will be estimated by maximiz-
ing a penalized-likelihood objective function. Working in terms of a monotonic transform
of the curve of interest does not affect the likelihood component of the objective function
but it does cause the smoothing penalty to be enforced on this transform of the curve
of interest. The measurement variance “perceived” by the smoothing penalty is affected
by the transform and influences the resulting resolution properties of the r'econstructed
images. This point will be discussed in greater detail in Sec. V.

All of the results of this work will be derived in terms of a general link function g(-),
assumed to be monotonic so that h(-) exists. We also assume that all needed derivatives
of g(-) and h(-) exist. We will then examine the effect of a few particular choices of the

link function on the resolution and noise properties in reconstructed images. .

B.2 Curve Fitting

The generalization of parametric regression to nonparametric regression would seem to
complicate the problem immensely, turning a relatively straightforward finite-dimensional
estimation problem into an intractable infinite-dimensional one. As in classical linear

regression, it might seem wise to fit the curve by use of maximum likelihood methods,
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but in the nonparametric case, any curve ¢(§) for which h[g(&;)] = yi, that is, any curve
that interpolates the data no matter how it behaves between the samples, maximizes the
likelihood [2]. In practice the problem is made tractable by adding the further constraint
that the estimated curve ¢(¢) be smooth and enfbrcing this constraint by penalizing the log
likelihood with a term of the form —\ [ [¢"(€)]? d€, where ¢"(£) is the second derivative of
q(€) and ) is the smoothing parameter [2]. If the unpenalized likelihood depends on ¢(§)
only through its values ¢(&;) at the measured points &;, i = 1,... , N, it can be shown that
the maximizer of the penalized likelihood is necessarily a natural cubic spline [2]. These
are curves that are piecewise cubic polynomials between each pair of measured points
and that satisfy the so-called “natural” boundary conditions of being first-order (linear)
polynomials to the left of the first measured point and to the right of the last measured
point. Such curves, which are continuous up to and including the first derivative, can be
specified by a finite number of coefficients.®

The log-likelihood for exponential densities is given by

InL(3,0,) Z(M’“ St el ©

We now define ¢; = ¢(§;) and a vector q = (g, . .. ,qN)T. Substituting the functions b
and ¢ appropriate for a Poisson density, using the fact, stated above, that u; = e¥: for the

Poisson distribution, and substituting for y; using Eq. 6, we have

In L(q,y) Z{ylln[hql ha)}, ®)

where we have dropped terms independent of ¢;.

For natural cubic splines, the penalty term takes on a simple form: ——/\ [ lg"( d§ =
—%/\qTKq, where K is an N x N matrix determined by the spacing of the measurement
points &; [2] and defined in Appendix A. Because the natural cubic spline interpolating
any specified set of points ¢(&;) is unique [2], finding g(§) maximizing Eq. 8 penalized by

®In this sense, roughness-penalized nonparametric regression does yield a parametrized curve, but given that
there are at least as many parameters as observations, the spirit is rather different from that of standard parametric

techniques.
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-/ [¢"(€))? d€ is thus tantamount to finding § maximizing the objective function

(q,y) = Z {yiIn [h(q:)] = h(q)} — %/\qTKq- (9)

The g maximizing this objective function can be found by use of Fisher scoring [9], which

entails an iterative update of the form

0°d ~1 9
new __ E 10
d d < { dqoq” }) oq’ (10)

which can be shown to yield
Q" = (W + \K) 'We, (11)

where W is a diagonal matrix with diagonal elements

- W(%‘)]Q
and z is given by
1
Z=q+ g [y: — hig:)]- (13)

The process is initialized by setting the ¢; = g(y;). For the identity and square root link
functions, care must be taken to avoid dividing by zero when elements of q grow small. In
these cases we set ¢; = max{g;, €} for some small ¢ > 0. While each iteration might appear
to be computationally intense, requiring the computation of the inverse of the N x N
matrix (W + AK), in practice many of the matrices involved have band properties that
can be exploited to keep the computation to 9(N) [2]. Iteration continues until the change

in h(q) from one iteration to the next falls below some small, specified threshold.

B.3 Image Reconstruction

Returning to the tomographic reconstruction problem, the strategy is thus to apply
this nonparametric regression curve-fitting to each projection independently. For each
projection angle ¢;, we take the measurements y) and find ) maximizing Eq. 9 by
means of the algorithm just described. The elements of the vector %) uniquely specify
a continuous spline g(%/)(¢), and we could easily evaluate this spline at any points ¢ de-

sired. The estimate of the corresponding smoothed projection values would then be given
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by P (¢) = h [¢®)(£)]. However, because reconstruction will be performed by use of
FBP, we generally require estimates of p(%/)(€) only at the same positions & at which the
original measurements were obtained; there is no need ever to construct explicitly the
spline specified by ). The elements g 4] which are samples of the smooth curve 3%/ (€),
are all that are required, and from them we estimate the samples p; pz =h (A(])> of the
smooth curve p{%)(¢) needed for reconstruction. This will be expressed in vector notation
asp¥) =h ( ) where here and throughout, the function h of a vector is assumed to op-
erate element by element. Reconstruction can then proceed by FBP, using an unapodized
ramp filter because the projections have already been smoothed [5].

The overall reconstruction process can thus be summarized by the equation

zésm{ {argrgg)m( y(j))]}, (14)

where BY) is a matrix operator representing the ramp filtering and backprojection of the
discrete samples h [arg maxq() ®(qU y(J))] at projection angle ¢;.

One advantage of fully iterative algorithms that cannot be reproduced exactly by this
approach is the ability to enforce nonnegativity constraints on reconstructed pixel values.
FBP simply does not enforce this constraint. At least two of the link functions do, however,
have the desirable property of enforcing nonnegativity in the smoothed projections. The
square root link g(u;) = /fi;, and the logarithm link g(x;) = In(u;), have inverses h(u;) =
p? and h(u;) = exp(u;), respectively, that automatically guarantee nonnegativity in the
smoothed projections. Moreover, for the identity link, the guard against allowing values

of ¢; to reach zero exactly also discourages the ¢; from crossing below zero.

B.4 An Alternative: Roughness-Penalized WLS

For comparison, we will also examine the application of a roughness-penalized WLS
objective function similar to the one proposed by Fessler [1]. In this approach, each fit

curve p(€) is the minimizer of the objective function

I Zwl w— ol + A [ O de. (15)

The objective function is written in terms of p(§) rather than ¢(£) because we will not

consider link functions other than the identity in this case; the smoothed projections will be
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estimated directly. As with the Poisson likelihood objective function, it would of course be
possible to incorporate different link functions into the WLS objective function and thus to
engender a range of resolution uniformity properties. However, because the two approaches
make different assumptions about the data statistics, our true interest is in comparing the
notse properties of images reconstructed by use of the WLS approach to those of images
reconstructed by use of the Poisson likelihood approach, and this can be achieved most
directly when using the identity link for both. The w; here are weights reflecting the
relative certainty of each measurement and we set them to be w; = 1/ max{y;, €}, for some

small € > 0.
As with Eq. 9, Eq. 15 is minimized by a natural cubic spline, and thus the penalty

term again takes on a simple form, [ [p"(€)])? d¢ = pTKp, where p = (py,...,pn)" with

p; = p(&). Equation 15 can thus be rewritten in vector form
Pwis(p,y) = (y —p)" W(y - p) + 20" Kp, (16)

where now W is a diagonal matrix with diagonal elements w;. Unlike Eq. 9, which required
an iterative method to find the maximum, the minimum of Eq. 16 can be solved for in

closed form. It can be shown [2] that the p minimizing Eq. 16 is
p=(W+IK) 'Wy. (17)

This equation has a very similar structure to Eq. 11. In fact, for the Poisson likelihood
objective function with the identity link, Eq. 11 produces an iteratively reweighted least
squares algorithm that differs from Eq. 17 only in that the weights used in the W matrix
are determined iteratively from the y; rather than estimated directly from them.

Despite the existence of a closed-form solution for the WLS objective, we will still express
the image-reconstruction estimator in terms of an extremum of the objective function, in

order to maintain a notation parallel to that used in the Poisson likelihood case:

M
Owis(y) =D BY {arg min @y s (p, y " ))} : (18)
i=1 i
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III. THEORETICAL RESOLUTION AND NOISE ANALYSIS

A. Local Impulse Response
A.1 Penalized Poisson Likelihood

As mentioned in the introduction, when characterizing imaging systems and algorithins
possessing nonuniform resolution properties, the local impulse response function concept
provides a useful generalization of the point-spread function concept. The LIR is the
system response to impulses added to particular positions in particular objects and is

defined as

0
1) = —pu(6 =1,...,P 19
(0) agm ( >7 m b 7 ? ( )
where p(0) = Ey [é\(Y)} is the mean of the estimator.
In [4], Fessler and Rogers discuss an unbiased empirical estimator of LIR that allows
for the evaluation of LIR for any pixel m from a set of R images estimated from R noisy

realizations {y(r)}le of the projections of the object of interest. It is given by

1(6) = s 3 (Bl - (@) TR0 (20

where p(6) = %Zil g(y(r)) is the sample mean of the reconstructions and fy(y; ) is
the statistical distribution of the measurements.

Because R may need to be large to obtain accurate estimates of LIR (we use R = 250
in the studies discussed below), an analytic expression for LIR would clearly be of great
benefit. For many well-behaved estimators, a locally linear approximation [4] allows the

LIR to be expressed in terms of the estimator’s action on a set of noiseless data:

1™(6) = %5(‘(9)), m=1,...,P : (21)

where Y (0) = Eg[Y]. As a basis for empirical evaluations, this is clearly a great im-
provement over Eq. 20 because it allows the estimator LIR for a pixel of interest to be
computed from two reconstructions: one from noiseless projections of the object and one

from noiseless projections of the object plus an impulse at the pixel of interest [4].
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In addition to providing a less intensive recipe for empirical assessment of LIR, Eq. 21

can also be evaluated analytically. Using the expression for é(y) in Eq. 14, we have

M
i 0 ) )
m _ () ( J
0) = jEZI B {89 [arg mq(z})\CD( Y )] } . (22)

Evaluating Eq. 22 entails computing the partial derivatives of a function of the implicitly
definéd estimators q¥) = arg max () ®(q,y0)). We do not have an explicit form for
the estimators, but fortunately, the partial derivatives can be computed solely from the
objective functions themselves using the implicit function theorem and the chain rule [4].
Specifically, as discussed in Appendix B, the expression g = arg maxqy ®(qV, y"))

implicitly defines the estimator ') as a function of the measurement y(/):
49 = () = [P, D) (23)

which allows Eq. 22 to be evaluated, as shown in Appendix B. The result found there is
M i 9

= ) hgM), YV Y70 24

> {4 a2, 7] -7"0)}. (24)

where A [h( @, YV )J is a matrix defined in Appendix B and ) = argmax @(q(j),—Y—(j))
is the result of applying the nonparametric regression estimator to the noisefree projection
Y. Table I evaluates A [h(d(j)),?(j)] for three different link functions: the identity
link, for which g{p;) = pi and h(p;) = p;; the logarithm link, for which g(p;) = In(y;) and
h(ui) = e*; and the square root link, for which g(p;) = \/fi; and h(p;) = p?. In the table,
Dlz;] denotes a diagonal matrix with diagonal elements z;.

Equation 24 is easily evaluated in practice. Evaluating the braces for all projection
angles yields a sef of vectors that can be assembled into an array with the dimensions of
a sinogram, which can be reconstructed by FBP to obtain the LIR for pixel m. Within
the braces, WY(])(O) is the projection at angle ¢, of an impulse at pixel m, the Yi(j)
correspond to the noiseless projections of the object of interest at that angle, and the
qz(J ) are the values obtained by applying the penalized Poisson likelihood estimator for the

link function in question to the noiseless projection. It should be pointed out that only

the %?(]‘)(9) need be reevaluated to obtain the LIR for different pixels. However, the
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whole process must be repeated to evaluate the LIR for different values of the smoothing

parameter \.

The validity of the locally linear approximation that licenses Eq. 21 and thus ultimately
Eq. 22 will be evaluated below by comparing results obtained using this approximation

with fully empirical results.

A.2 Penalized WLS

Under the locally linear approximation, the same analysis can be applied to the WLS

estimator with an identity link of Eq. 18. In this case,

M ‘
I .s(0) = ZB(j) {8% [arg min fb(p(j),?(j))] } . (25)

()
. P
Jj=1

Once again, the derivatives can be evaluated by invoking the implicit function theorem

and the chain rule. The details are given in Appendix C, which leads to the conclusion

that
o " 9 )
m _ ) () W] 9 <FU
IWst)—}j:ljBf {A .Y Y <e>}, (26)
where
-1
—( 1 50
AlpO Y =dp|—=|+ak} D|Z_|. (27)
(7) <2
Y; Y_(J)

This expression can be evaluated in the same way as Eq. 24.

B. Variance
B.1 Penalized Poisson Likelihood

As with the evaluation of resolution properties, empirical evaluation of estimator vari-
ance can be extremely computationally intensive, but once again the locally linear approx-
imation can be used to derive an analytic expression. We begin with the definition of the

estimator covariance
Cov {6} :E{[é—E{@H [a-E{a}]T}. (28)
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Substituting Eq. 14 for 8 and expressing G0 = arg maxq ®(q¥),y") in terms of the

implicit function of Eq. 23, this can easily be shown to yield
M
Cov {8} =3 BOCov {1 [P (Y]} [B]". (29)
7j=1

Under the locally linear approximation [20], the central factor, the covariance of the esti-

mator for each projection, is given by
Nyl Yo : a2l
Cov {h [fD(YD)]} = Vh [f(ﬂ(Y )] Cov { Y} [Vh, [fU)(Y )” . (30)

The central factor here, Cov {Y(j)}, is simply given by D [?i(j)] for uncorrelated Poisson
noise, and the other factor, Vi [f(j)(?(j))] is given by

va[fOX)] = D [T v T, (31)

where Vf(j)(?(j)) is evaluated in Eq. 37 of Appendix B.

Evaluating the entire P x P covariance matrix Cov {5 } would be quite computationally
intense, but this is often not necessary. In the present work, we will be concerned only
with the variance of the estimator @ for particular pixels m. Defining e™ to be the 1 x N

unit vector with a 1 in the m!* element, we can write
Var {@\m} = (™" Cov {5} e™
M ‘ 4
= > (™)' BYCov {h [fO(YD)]} BITem. (32)
j=1

This expression can be evaluated as follows. The 1x N vector (e™)" BY) represents the m*
row of the filtration and backprojection matrix BY) for projection angle ¢;. Each element
of this vector thus represents the contribution of a particular projection bin to image pixel
m. The i** element of the vector is obtained by filtering and backprojecting a projection
at angle ¢; consisting simply of a unit impulse in the it" projection bin and picking up the
value in pixel m of the reconstruction matrix. The central factor, Cov {h [f(j)(Y(j))] },
can be computed using Egs. 30 and 31 as well as Eq. 37 of Appendix B.

Once again, the validity of the locally linear approximation that underlies this approach
will be evaluated below by comparing results obtained using this approximation with fully

empirical results.
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B.2 Penalized WLS

For the PWLS projection smoothing, the analytic derivation of noise properties is es-
sentially identical. All the results of the previous section hold with the function A taken to
be the identity function and Eq. 42 of Appendix C used to evaluate V [f‘“(?m)} when

needed.

IV. RESULTS
A. Local Impulse Response
A.1 Validation of Locally Linear Approximation

In order to validate the locally linear approximation that is the basis of Egs. 21 and 24
for the penalized Poisson likelihood approach and Eq. 26 for the penalized WLS approach,
we computed the unbiased empirical estimator of LIR given in Eq. 20 and compared it
to the analytic predictions. We did so for both the penalized WLS approach with the
identity link and the penalized Poisson likelihood approach with three choices of link
function: identity, logarithm, and square root.

Specifically, we took as our object @ the phantom shown in Fig. 1, having relative
emission intensities 1, 2, and 3 in the cold disk (left), background, and hot disk (right),
respectively. This phantom, which is essentially the same as the one used in [4], will allow
us to test the dependence of LIR on count levels. The phantom was specified on a 128128
grid and we generated projections of 128 bins and 128 angles, using strip integrals the same
width as the bins, which in turn were the same size as the pixels. The system thus has
intrinsically uniform and isotropic resolution. We did not model the effects of attenuation
or scatter. The mean number of counts per bin was approximately 6-10. We generated
250 Poisson realizations of the projections and performed reconstructions using each of
the four methods under consideration for values of the smoothing parameter chosen to
yield approximately the same average image resolution in all four cases. We evaluated the
LIR at three different pixels: one in the center of the cold disk, one in the center of the
background ellipse, and one in the center of the hot disk. We also computed the analytic
predictions of LIR at these positions using Eqs. 24 and 26.

Figure 2 displays horizontal profiles through the LIR for the estimators corresponding
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to these four reconstruction methods. The profiles through the LIRs for the cold disk,
background ellipse, and hot disk are concatenated left to right in this figure. The triangles
are for the empirical estimator of Eq. 20 and the solid line for the analytic evaluation of
Egs. 24 (penalized Poisson likelihood) and 26 (benalized WLS).

The agreement between the empirical results and the analytic prediction is clearly ex-
cellent, and justifies our use of the locally linear approximation—at least for resolution

analysis—in what follows.

A.2 Resolution Nonuniformity

One fact that is clear upon inspection of Fig. 2 is that the smoothing approaches lead to
images with nonuniform, object-dependent resolution, and that the choice of link function
has a profound effect on this property. The LIR for penalized Poisson likelihood with
an identity link can be seen to be wider in the high-count region than in the low-count
region, indicating that resolution is better in low-count than in high-count areas. The
logarithm link leads to the opposite behavior: the LIR is wider in the low-count region
than in the high-count region, indicating that resolution is better in high-count than in
low-count areas. Finally, for the square root link, the LIRs seem to be of more or less
constant width, indicating that resolution is essentially uniform and object independent.
While they are not shown, LIR profiles for images reconstructed after smoothing the
projections with a Hanning filter have a similar appearance to those for the penalized
Poisson likelihood estimator with a square root link: constant width for all three profiles.
Not surprisingly, since the link function is the chief determinant of resolution uniformity
properties, the penalized WLS estimator with an identity link exhibits the same behavior
as the penalized Poisson likelihood estimator with an identity link. For clarity, we will thus
omit the WLS results from the remainder of the resolution uniformity studies in order to
focus on link-function effects; we will return to the WLS estimator only wheﬁ we consider
noise properties.

These resolution uniformity trends were verified by a further study: LIRs at these three
locations were computed by evaluating the analytic expression for LIR for the penalized
Poisson likelihood with these three link functions and a range of values of the smoothing

parameter, as well as empirically for the Hanning filter with a range of filter cutoffs. The
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horizontal and vertical full-width half-maxima (FWHM) of each LIR were then computed,
as well as an average FWHM, which we define as the average of the horizontal and vertical
FWHM.% In Fig. 3, we plot the ratio of the average FWHM of the hot-disk LIR to that of
the cold-disk LIR. For each estimator, these ratios are plotted versus the average FWHM of
the center (background ellipse) LIR so that they correspond to more or less similar degrees
of smoothing for the various methods. We can see clearly that the nonuniformity trends
observed in the profiles of Fig. 2 are typical for a wide range of values of the smoothing
parameter, though not surprisingly they diminish as the smoothing parameter grows small
and the influence of the penalty term in the objective function becomes negligible.

While we have been assessing the resolution uniformity properties of the estimators by
comparing the average FWHM of the LIRs in high- and low-count regions, it is equally
important to consider the isotropy of resolution at a given point in the image as captured
by the symmetry or asymmetry of the LIR for that pixel. That some of the methods lead
to asymmetric LIRs is evident from Fig. 4, which displays contours at levels 25, 50, 75,
and 99% of peak value for each of the LIRs whose horizontal profiles were shown in Fig. 2.
As in the case of resolution uniformity, the identity and logarithm links lead to essentially
opposite behavior, and the square root link yields essentially symmetric LIRs. While they
are not shown, the contours for LIRs after projection smoothing with a simple Hanning
filter are also essentially circular.

Once again, these trends were verified by a further study. The analytically computed
LIRs used to generate the hot/cold LIR ratios of Fig. 3 were this time used to generate ra-
tios of horizontal FWHM to vertical FWHM for the LIR corresponding to the background
ellipse. The results are plotted in Fig. 5, again versus the average FWHM of background
ellipse LIR so that they correspond to more or less similar degrees of smoothing for the
various methods. .

The results presented thus far have been for three locations in the phantom, but they are
typical of results observed at other positions, including those at boundaries between regions
in the phantom. To confirm this assertion quantitatively, we calculated the following global
measure of image uniformity and isotropy. We calculated the LIR at 60 different positions

®This definition of average FWHM is meaningful here because the FWHM contours at these three image locations

are all approximately elliptical with major and minor axes aligned horizontally and vertically.
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in the phantom when reconstructing by FBP after projection smoothing by use of the
penalized Poisson likelihood estimator with the three link functions as well as by use of
the Hanning filter. We selected values of the smoothing parameters and the Hanning filter
cutoff to yield approximately equal values of the global average radius (3.6 cm) of the
50% contour for all four methods. For each method we calculated this global average, as
well as the mean absolute deviation of the radii of the 50% contour from this average.
Small values of the deviation indicate that resolution is essentially uniform and isotropic.
The logarithm and identity links led to a mean absolute deviation of 0.13 and 0.11 pixels,
respectively, while the square root link and Hanning filtration each led to a mean absolute
deviation of 0.02 pixels.

The source of resolution nonuniformity and anisotropy, the dependence on the choice of

link function, and the consequences of these properties will be discussed further in Sec. V.

B. Variance
B.1 Validation of Locally Linear Approximation

Although the locally linear approximation underlying the analytic expressions for LIR
was shown by the results of Fig. 2 to be justified in that context, that does not necessarily
mean that the same approximation is justified for the derivation of analytic variance
expressions. It is possible that the noise properties of the reconstructed images could
depend more strongly on the non-locally linear components of the estimator than do the
resolution properties, and this is indeed found to be the case. We computed empirical
noise levels by generating 800 Poisson realizations of the projections of the phantom in
Fig. 1 and reconstructing by each of the methods under consideration for a range of values
of the smoothing parameter. We then computed the sample standard deviation, as well
its 95% confidence interval, at three points in the image: the center of the hot disk, the
center of the background ellipse, and the center of the cold disk. We also computed the
analytic prediction of standard deviation at those three points for all the methods and
smoothing parameters using Eq. 32.

For all the methods, the analytic predictions generally lay within the 95% confidence

interval of the empirical estimate of standard deviation for all values of the smoothing
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parameter for the point at the center of the cold disk and the point at the center of the
phantom. However, for the point at the center of the hot disk, the analytic predictions for
all the methods generally lay below the 95% confidence interval of the empirical standard
deviation for larger values of the smoothing pérameter. A typical such result is shown
in Fig. 6, where the analytic predictions and empirical estimates (with 95% confidence
intervals) of standard deviation for the Poisson likelihood estimator with an identity link
for the point at the center of the hot disk are plotted versus the analytic prediction of
average LIR FWHM at that point, giving the plots the form of resolution-noise curves.
It is not surprising that the agreement between the analytic predictions and empirical
results always holds for small values of the smoothing parameter, because the approaches
are actually linear in the limit as the smoothing parameter approaches zero. Nonetheless,
it is the larger values of the smoothing parameter that are likely to be of interest in
practical situations, and the occasional failure of the locally linear assumption in this
regime suggests that we should not rely upon it to characterize the noise properties of the

approaches.

C. Resolution-Noise Tradeoff

We have seen above that the different link functions under consideration induce differ-
ent, count-dependent resolution uniformity and isotropy properties. It is of course also
important to consider the resolution-noise tradeoffs induced by the various methods. As
we have seen in the previous sections, the analytic expression for LIR agrees well with
empirical results while the analytic expression for variance does not, so we have generated
resolution-noise curves in which the resolution properties are determined using the ana-
lytic expression for LIR while the variance results are generated from empirical simulations
involving 800 realizations, as discussed in the previous section.

In order to give an overall sense of comparative resolution-noise tradeoffs fdr the WLS
estimator with an identity link, the Poisson likelihood estimator with the identity, loga-
rithm, and square root links, and the Hanning filter, we have plotted them together in
two separate figures: one for the point at the center of the cold disk (Fig. 7(a)) and one
for the point at the center of the hot disk (Fig. 7(b)). The Hanning filter curve was

generated using empirical calculations of both resolution and noise properties. It does not
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extend below approximately 2 pixels average FWHM because it is not possible to achieve
such low degrees of smoothing with a Hanning filter. As it is, the range of the curve calls
attention to the region of the bias-variance curves that is truly of practical interest—the
region involving moderate amounts of smoothiﬁg of the degree encountered when making
use of an apodization window in FBP. Close-ups of these regions are depicted in Figs.
7(c) and (d). The fact that all the objective-function-based approaches behave nearly
identically in the upper-left, low-smoothing region is explained by the fact that as the
smoothing parameter approaches zero, the approaches all yield solutions that approach
the unconstrained maximum likelihood solution of simply interpolating the measurements.

One must take some care in making comparisons between the curves on this plot because
they are for estimators with different resolution isotropy properties. Considering only
the average FWHM of the LIR tends to handicap estimators with isotropic resolution
properties, because it is reasonable to believe that for a given average resolution there exists
some anisotropic smoothing that can outperform the isotropic smoothing in terms of noise
properties [7]. This said, it is encouraging to see that the resolution-noise performance
of the Poisson likelihood estimator with a square root link, which we have seen to have
quite isotropic resolution properties, generally performs better than the WLS estimator
with the identity link and the Poisson likelihood estimator with a logarithm link and that
it performs comparably to the Poisson likelihood estimator with an identity link, all of
which we have seen to have anisotropic resolution properties.

.It is more meaningful to compare estimators with matched resolution isotropy proper-
ties, and we adopt this approach to resolve the question of whether there is indeed any
advantage in adopting the estimator based on the Poisson likelihood over that based on
WLS or the Hanning filter. In particular, in Fig. 8(a) we plot resolution-noise curves with
95% confidence intervals for the points at the center of hot and cold disks for the Pois-
son likelihood estimator and for the WLS estimator, both with an identity link to ensure
matched resolution properties. For the moderate to high levels of smoothing (> 3 pixels
average FWHM) of practical interest, the curves for the Poisson likelihood estimator lies
below and to the left of the curves for the WLS estimator and the confidence intervals

do not overlap, indicating superior performance for the Poisson likelihood estimator. In
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Fig. 8(b), we plot resolution-noise curves with 95% confidence intervals for the points at
the center of hot and cold disks for the Poisson likelihood estimator with a square root
link and for the Hanning filter. Both have isotropic resolution properties, as we have seen.
We observe that over much of the range of intérest, the curves for the Poisson likelihood
estimator lie below and to the left of the curves for the Hanning filter and that the confi-
dence intervals for the two different approaches do not overlap, again indicating superior

performance for the Poisson likelihood estimator.

V. DISCUSSION
A. The Link Function

The forms of the expressions for the matrix A [h(q(j)),?(j)J given in Table I for the Pois-
son likelihood estimators with different link functions offer some insight into the nonuni-
form, count-dependent image resolution that arises when applying these estimators. Con-
sider, as in [4], the simplified situation where the measurement noise has constant variance

o?. In this case, the matrix A would become:

IDENTITY :  {I+ 0?2k}
-1
LOG : {I + %K}
g
A '—1.
SQUARE ROOT : { I+ ZK} . | (33)

We see that for the identity link, the measurements with variance ¢? induce an effective
smoothing parameter o). Thus higher variance leads to more smoothing in this case.
Similar behavior carries over to the more complicated case of nonconstant Poisson variance,
where regions of higher variance (higher counts) in the projections are smoothed more than
regions of lower variance (lower counts). Because regions of high counts in thé Vprojections
are generally associated with regions of high counts in the image, the result is reconstructed
images whose high-count regions are smoothed more heavily than are its low-count regions.
Applying the logarithm link to projections with constant variance o? leads to an effective
smoothing parameter U’\—z, and thus the situation is the opposite of that just described:

higher variance leads to less smoothing in this case and thus we would expect, in the
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case of nonconstant, Poisson variance. reconstructed images whose low-count regions are
smoothed more heavily than are its high-count regions. Finally, applving the square root
link to projections with constant variance o2 leads to an effective smoothing parameter
%, which is independent of the variance o2 Thus projections are smoothed more or less
equivalently regardless of count level, and the result, in the case of nonconstant Poisson
variance, is reconstructed images with more or less uniform resolution.

The source of these properties becomes apparent when we consider more clearly the role

the link function plays in projection smoothing. In developing the curve-fitting objective

function, we effectively began with the log of the Poisson likelihood function,

InL(p,y) = Z {yilnp; — i} (34)

where terms independent of u;, the means of the random variables being measured, have
been dropped. Introduction of the link function g means that one works to estimate not
u; directly, but rather a transform ¢(&;) = g(u;) of u;. For any monotonic link function g,
unpenalized maximum likelihood estimation of the ¢(&;) would yield the same estimates
wi = h(q(&)) = wi; thus, the introduction of a link function does not affect the log-
likelihood component of the objective function. However, by expressing the roughness
penalty —2 [ ¢”(€)%d¢ in terms of the curve ¢(§) rather than the curve of interest p(£) =
h(q(€)), we cause the roughness penalty to be enforced on the transform q(€) = g(p(£))
of the curve of interest. The variance “perceived” by the roughness penalty in these
transformed curves is influenced by the choice of link function. As can readily be shown
[19], if a random variable y with mean u has variance o?(p), then a transform g(y) of the
variable has variance &~ o2(u) [¢'(1))°. For a Poisson random variable with o2(y) = g,
the logarithm transform leads to a variance 1/4 whereas a square root transform leads
to an essentially constant variance equal to 1/4. The identity transform naturally does
not affect the variance at all; it remains equal to p. These “perceived” variances agree
perfectly with the effective smoothing parameters seen in Eq. 33 for these choices of link
function. In fact, the logarithm link function was the first non-identity link function we
investigated, and it was in coming to this understanding of the source of its nonuniform
resolution behavior that we were lead to identify the square root link as likely to lead to

essentially uniform resolution properties.
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B. A Related Spline-Based Projection Smoothing Approach

Having described in some detail our nonparametric regression sinogram smoothing ap-
proach, it is perhaps worth noting some of its similarities and differences with the approach
of Benali et al. [16] and Pélégrini et al. [17,18] mentioned in Sec. 1. In their approach,
after applying the transformation \/ygj) + 3/8 to the projection data, they fit to each
projection a cubic spline minimizing an unweighted, roughness-penalized least squares ob-
jective function. This is tantamount to constraining the smooth function underlying the
transformed projection data to lie in a Sobolev space H®, which is the space of functions
whose derivatives up to order 1 are absolutely continuous and whose 2nd derivative is
square integrable. Given the set of spline-smoothed projections, they then solve another
optimization problem to find the L-dimensional subspace of H® containing the L princi-
pal components of the set of smoothed projections (where L is some freely chosen integer
less than N, the number of measurements per projection). The smoothed projections
are then projected onto this subspace and the inverse of the transformation yi(j nt 3/8
applied to the result.

In our approach, the addition of the penalty term based on the integral of the squared
second derivative to the Poisson likelihood or WLS objective functions in Eqs. 9 and 15
is also tantamount to constraining the solutions to lie in a Sobolev space H®, although
the differences in form between our objective functions and theirs mean that our solutions
will not, in general, lie at the same point in the space as the solutions to their first op-
timization problem. Their use of a square root transform may seem to be similar to our
use of a square-root link function, but there is an important difference. The square root
transform allows them to approzimate the Poisson-distributed random variables as nor-
mally distributed variables with constant variance, and thus to adopt an unweighted least
squares objective function, whereas our approach, while incorporating the square root link
to modify resolution properties, still retains the exact Poisson likelihood in the objective
function. The significance of this difference for noise performance would be a worthy topic
of future study. Finally, their second optimization, involving the reduction of the dimen-
sionality of the Sobolev space inhabited by the smoothed projections has no counterpart

in our model. It might be fruitful to explore the effect of this additional smoothing on
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noise-resolution tradeoffs and particularly on resolution uniformity properties.

Benali et al. [16] and Pélégrini et al. [17,18] also investigate the application of an alter-
native implementation of FBP called spline-filtered backprojection (SFBP) that could po-
tentially be incorporated into future extensions of our own approach. The appeal of SFBP
is that if the smoothed projection data is a discrete version of projections belonging to a
Sobqlev space H'™ for integer m, then the approach guarantees that the reconstructed
image will be a discrete version of a continuous activity distribution that belongs to a
space H (m=3). The approach consists essentially in oversampling the smoothed projection
measurements using interpolating splines of degree 2m — 1, computing the discrete version
of a spline-based, projection-angle-dependent reconstruction filter and convolving it with
the oversampled projections, and finally backprojection the convolved projections using
conventional algorithms. In guaranteeing that the regularity properties of the projections

are carried into the reconstructed image, the approach also avoids the small image-space

shift-variance introduced by the usual discretization of FBP.

VI. CONCLUSIONS

We have presented and investigated an approach to tomographic image reconstruction in
which nonparametric regression using a roughness-penalized Poisson likelihood objective
function is used to smooth each projection independently prior to reconstruction by un-
apodized filtered backprojection (FBP). As an added generalization, the roughness penalty
was expressed in terms of a monotonic transform, known as the link function, of the pro-
jections. The approach was found to have the desirable ability to produce images with
essentially uniform and isotropic resolution properties when incorporating the square root
link function. Of course, simple shift-invariant projection filtering also produces images
with uniform and isotropic resolution, but the proposed sinogram smoothing approach was
found to yield resolution-noise tradeoffs that were superior to those obtained when mak-
ing use of shift-invariant filtering. The proposed approach was also found to outperform
a second sinogram smoothing approach, based on a weighted least squares rather than
Poisson likelihood objective function, when applied to genuinely Poisson-distributed data.
In future work, the proposed approach will be extended to incorporate correction and

compensation for a wider range of physical factors and then compared to fully iterative,
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penalized-likelihood algorithms. We expect that the proposed sinogram smoothing and
processing approach may provide a viable, computationally efficient alternative to these

fully iterative approaches, particularly for relatively simple imaging tasks such as SPECT

scintimammography [21].

APPENDIX A

This section defines the matrix K that arises in Eqgs. 9 and 16, among others. K is
defined in terms of two band matrices, S and R. Let A; =&, — &, fore=1,... N - 1.
Then S is the N x (N — 2) matrix with entries s;;, fori=1,... ,Nand j=1,... ,N -2,

given by

Al o Al Al o AL
i3 = A7, Sj11,5 = —4; ALy Sit2y = AT

forj=1,... , N—=2,ands;; =0fori—j5j>3o0ri—j7< -1
R is a symmetric (N — 2) x (N — 2) matrix with elements r;; for i =1,... ,N — 2 and
j=1,...,N —2 given by
1 .
e = (B +A), i=1.. N2,
Tiitl = Ti+l,i:éAi7 i=1,...,N =3,

and r;; = 0 for |7 — j| > 2. We can now give the definition of K:
K =SR'ST.

This definition is always meaningful because it can be shown that R is strictly positive
definite and thus R™' necessarily exists. Further details are given in [2, p. 13|, where, it
should be noted, in defining K the authors use a non-standard matrix element numbering

convention that simplifies their later derivations but that has not been used here.

APPENDIX B

Evaluating Eq. 22 entails computing the partial derivatives of a function of the implicitly
defined estimators ) = arg mMax () ®(qV,y0)). This can be accomplished by invoking
the implicit function theorem [22] and the chain rule. The implicit function theorem holds

that if ®(q,y")) has a unique global maximum G for any y, and that the partial
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derivatives of ®(q"), y()) with respect to q) are zero at V), then there exists an implicit
function §) = fO(y0) = [/ (D), .., 7 ()] satisfying
O (D (v w0l = 0. 5
—O(fY(yY),yV)=0, i=1,...,N, (35)
dg”

where the notation should be interpreted to mean that the derivative of ®(q\?, y()) with

respect to ¢V is evaluated at q@¥) = f(j)(y(j)).7 Thus, by the chain rule

[

4 )y ) _ (
a0, argrﬁﬂ??‘@( LY )J = ae [f]( )}

= D [W)] VOT) 5

a0 Y (6), (36)

where the notation D [z;] denotes a diagonal matrix with diagonal entries D;; = ;,

q¥) = arg maxg() @(q(j),?(j)), which is the result of applying the nonparametric regres-

sion estimator to the noisefree projection YV ,and V = [ay(ﬂ’ cee ﬁ] .
N
It is straightforward to show [4] that
N P | N (s
VIOTY) = [-Vuo@?, Y] Vi@, ¥), (37)

where [Vzo(p(q(j),y(j))]kl = @(q(j),y(j)),and [qu)(q(j),y(j))]kl = e (j?;qu)(q(j),y(j))-
!
Using the definition of ®(q,y) in Eq. 9, it can then be shown that

h (4) h (7)2 . .
Vao(a,y) = DH ) M0 )| <Ak (@)

o
6ql(cj)q1(1)

h(g?) (g2

and

' ' |y (7

Vid(q?,y@) = D [ (qu)) _ (39)
h(g;")

"The theorem’s conditions are satisfied by the objective functions that arise for the three link functions being

considered: identity, square root, and logarithm. Specifically, the Hessian V20®(qY’,y\?) for a general link
function is given in Eq. 38. The elements of the diagonal matrix evaluate to '—z“(‘%g for the identity link,
_‘("%%7 — 2 for the square root link, and — exp(qi(j)) for the logarithm link. Except when yfj) = 0 for the identity
linlz,‘ the elements are strictly negative and the diagonal matrix is thus negative definite. Because AK can be
shown to be nonnegative definite [2], the Hessian is thus negative definite and the objective function concave. The
seemingly problematic situation when y(” = 0 for the identity link can be handled simply by discarding such

zero-information measurements, as in [1}.
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Combining all these results gives the final expression for LIR given in Eq. 24, where we

have defined
A [n@?), Y] = p [ v V).
APPENDIX C

Using the argument of Appendix B,® the partial derivative of Eq. 25 can be written

0 . ) ) i 0 <
— d(pW) YN = vl — Y 4
Y {argr}r)l(gl (P”,Y )} oY )99 (6), (40)

with f)(y0)) being an implicit function that can be reexpressed for the noiseless data as
Ny -1 N
VIOE) = |-V, Y] viaep®, ¥7), (41)

where pU) = arg min ;) @(p(j),?(j)) is the result of applying the WLS estimator to the

noiseless data. In calculating the needed derivatives, we find that

, . 1
Va®(pW,y?) = 2D 5| T 2K
Y;

Vllq)(p(j)ay(j)) = =2D _P%‘T . (42)
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Fig. 1. Phantom used to examine resolution and noise properties of the estimators under consideration.
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Horizontal profiles through three LIR functions for four projection-smoothing methods under

consideration applied to the phantom of Fig. 1. The profiles, which are concatenated left to right,

are for the LIR functions corresponding to the points at the center of the cold disk, the center of the

background ellipse, and the center of the hot disk, respectively. The triangles denote empirical results

and the solid lines analytic predictions of LIR using Eqgs. 24 and 26. The different link functions are

seen to give rise to different resolution uniformity properties.
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Ratio of the average LIR function FWHM for the hot disk to that for the cold disk, plotted

“versus average FWHM for the center of the background ellipse. This figure confirms the nonuniform

resolution properties observed in Fig. 2.
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Fig. 4. Contours of the LIR functions at 25, 50 ,75, and 99% of peak value. The left column corresponds
to the center of the cold disk, the center column to the center of the background ellipse, and the right
column to the center of the hot disk. The different link functions are seen to give rise to different
resolution isotropy properties in addition to the different resolution uniformity properties already

observed in Fig. 2.
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Fig. 5. Ratio of the vertical LIR function FWHM to the horizontal LIR function FWHM for the center of
the background ellipse, plotted versus average FWHM for the center of the background ellipse. This

figure confirms the anisotropic resolution properties observed in Fig. 4.
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Fig. 6. Plot of analytic prediction of standard deviation at the center of the hot disk for the Poisson
likelihood estimator with an identity link along with the empirical estimate of the same quantity,
including 95% confidence intervals. The failure of the analytic prediction to intersect the 95% confi-
dence intervals at most points suggests that the locally linear approximation underlying the analytic

prediction may be unwarranted.
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Fig. 7. (a) Resolution-variance tradeoff at the point at the center of the cold disk for the Poisson
likelihood estimator with three choices of link function, the WLS estimator with the identity link, and
the Hanning filter. (b) Same plot for the point at the center of the hot disk. (c) A close-up of the

lower right corner of (a). (d) A close-up of the lower right corner of (b).
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Fig. 8. (a) Resolution-variance tradeoff, with 95% confidence intervals, for the Poisson likelihood and
WLS estimators, both with an identity link and thus matched resolution anisotropy, at the centers
of the cold and hot disks. (b) Resolution-variance tradeoff, with 95% confidence intervals, for the
Poisson likelihood estimator with a square root link and for the Hanning filter, both of which have

essentially isotropic resolution, at the centers of the cold and hot disks.
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Spline-Based Inverse Radon Transform in Two and Three Dimensions

P.J. La Riviere, Student Member, IEEE, and X. Pan, Member, IEEE

Department of Radiolog

Abstract

Radon transform is a continuous
integral equation, the discrete nature of the data output by
tomographic imaging systems generally demands that images
be reconstructed using 2 discrete approximation to the
wransform. However, by fitting an analytic function to the
projection data prior to reconstruction, one can av01d such
approximations and preserve and exploit the continuous
nature of the inverse transform.

We present methods for the evaluation of the inverse
Radon transform in two and three dimensions in which cubic
spline functions are fit to the projection data. allowing the
integrals that represent the filtration of the sinogram to be
carried out in closed form and also eliminating the need for
interpolation upon backprojection. Moreover, in the presence
of noise, the algorithm can be used to reconstruct directly
from the coefficients of smoothing splines, which are the
minimizers of a popular curve-fitting measure. We find that
the 2D and 3D direct-spline algorithms have superior
resolution to their 2D and 3D FBP counterparts, albeit with
higher noise levels, and that they have slightly lower ideal-
observer signal-to-noise ratios for the detection of a l-cm,
spherical lesion with a 6:1 lesion-background concentration
ratio.

While the exact inverse

I. INTRODUCTION

The inverse Radon transform provides the mathematical
foundation for tomographic imaging, which involves
reconstructing images of distributions of anatomical or
physiological properties from projections of those
distributions. In computed tomography (CT) [l]. for
instance, the property being imaged is the linear photon
attenuation coefficient of tissue at various points in the body.
while in positron emission tomography (PET) [2] or in
single-photon emission computed tomography (SPECT) [3]
it is the concentration of injected radiopharmaceuticals at
various points in the body. We will denote any such
distribution in two dimensions by f(x,v) and label each
projection through it by the pair f(p(} where @ specifies
the projection angle and & the projection distance. The value
of such a projection is given by the line integral of the
distribution along the line specified by {g'(p} and will be
denoted by p(&,¢). Similarly, we will denote a three-
dimensional distribution by f(x.v.z) and label each
projection through it by the triplet {£.6.0}, where 6 and
¢ specify the orientation of the plane and ¢ the distance of
the plane to the origin of the coordinates. The value of such a
projection is given by the planar integral of the distribution
over the plane specified by é,@,qo} and will be denoted by
p(£.6.9). The functions p(&,¢) and p(&.6,¢) are known
as sinograms because in the two-dimensional case a point
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distribution in {x,y} space maps to a sinusoid in {¢.0}
space.

The Radon transform is a continuous, integral transform
that relates the sinogram p(é,(p) to f(x.y) in two
dimensions and the sinogram p(f.@.(o) to f .\‘,)'.:) in
three dimensions [4,5.6]. Inverting the Radon transform
exactly to recover a distribution requires continuous, noise-
free knowledge of the distribution’s sinogram. which entails
having an infinite set of perfect projection measurements. In
practice, of course, one can only collect projection data in the
two-dimensional case for a finite number of projection
distances &, (we call these discrete samples projection bins)
at a finite number of projection angles ¢, and the
measurements are invariably contaminated with noise. In the
three-dimensional case. the planar-integral projection data
cannot generally be measured directly and must instead be
generated from line-integral projection data; it is, however,
still only generated for a finite number of projection bins &
and projection angles ¢, and 6, .

Because the sinogram p(@.(p) in two dimensions (or
p(g',@,(p) in three dimensions) is known only on a finite
gridof £ and @, (or &, ¢,. and 6,), we cannot invert the
Radon transform exactly to recover the distribution f(xy)
(or f(x,y.z)); we must instead turn to a discrete
approximation of the inverse. For instance, one way of
implementing the most popular two-dimensional Radon
inversion algorithm—filtered backprojection (FBP) (7.8}—
begins with a discrete filtration of the sinogram. The filtered
samples of & for each projection angle @, are then
backprojected onto the image grid and the resulting images
summed to give a final reconstructed image. One way to
view the backprojection step is to imagine casting a
perpendicular ray from each image pixel to each projection
angle in turn, summing the sinogram values picked up at
each angle to obtain the final pixel value. In this view, the
difficulty lies in determining what value to pick up from each
projection angle, for in general the perpendicular line will not
fall directly in the center of a projection bin. In the simplest
schemes, one simply picks up the value of the bin the pixel
projects onto, while in a more complicated approach one
might perform a linear interpolation of the values in the two
nearest projection bins. In the most sophisticated schemes,
one uses a weighted average of the values in a slightly larger
neighborhood. A similar procedure can be used to implement
three-dimensional FBP [9].

The discreteness of the sinogram thus dictates discreteness
in both the filtration and backprojection steps of the
algorithm. If, however, one had a continuous, analytic
expression for the sinogram at each projection angle—if the
sinogram were a set of known one-dimensional functions of
& —it might be possible to implement the filtration and
backprojection steps in a continuous manner. The filtration
could be performed analytically, and the resulting filtered
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* projections would be continuous functions which, in the
pixel-traversal view of backprojection described above, could
be sampled wherever a projection might strike without any
need to interpolate. Naturally, such an analytic, continuous
expression for the sinogram cannot be obtained directly from
any tomographic imaging system, but must rather be
obtained by fitting an analytic expression to the discretely
sampled data. Not every class of function that could be fit to
the data would allow the filtration of the projections to be
calculated in closed form, but Wahba [10] has shown that one
class that does allow such a solution are the cubic splines,
piecewise third-order polynomials that are continuous up to
and including the second derivative at the connection points
between pieces. This is the class of fitting functions we
investigate in this paper, introducing Wahba’s results (with
some corrections and simplifications), and extending the
treatment to the three-dimensional Radon transform.

This method offers a certain conceptual appeal, as well as
the advantage of directness when one wishes to smooth noisy
projection data by fitting curves that minimize the popular
penalized least-squares measure [11]. As it turns out, the
minimizers of this measure are the natural cubic splines
mentioned above and thus reconstruction can proceed directly
from the coefficients of these splines in this case.

II. METHODS

A. Inverse 2D Radon transform in coordinate space

The essential problem in two-dimensional tomography is
the reconstruction of a distribution f(x,y) (or f(r,8) in
polar coordinates) from knowledge of the discrete sinogram
p(é,,(pl), where i=-N,...N and j=1,....M. This
convention for the index i, particularly the choice of an odd
number of projection bins, will simplify the mathematical
expressions to be derived below, but the proposed technique
is applicable to geometries with an even number of bins as
well. We assume in the present paper that we have a parallel-
beam geometry.

Perhaps the most familiar way of expressing the inverse
of the two-dimensional Radon transform is in terms of the
frequency-space representation of the continuous sinogram:

£(r.6)= [ [lv| P(v,0)e"™dvde, )
0 —e

where v is the spatial-frequency variable corresponding to
E, P v,(p) is the Fourier transform of the sinogram
p(é,(p with respect to the variable &, and j is the
imaginary number v—-1. This expression provides the
theoretical basis for FBP, as |v] is just the familiar ramp
filter. This expression may be written in coordinate space as

f(r.6)= 2; [1.0(0)do, @
where
| p(Ee) . T P )
J,(@)=1li 2l | ——dE |, (3
A2 b s

2225

and in which & =rcos(6-¢) and p’(£,¢). is the first
derivative of the sinogram p(&,@) with respect to & [12,4].
Taking the limit as € — 0 of the sum of these two integrals
allows us to avoid integrating over the singularity at £" =&
In general equations (2) and (3) are less useful than equation
(1) because the data collected in PET, SPECT, or CT
constitute samples of the sinogram p(é,q)) itself, and do not
provide any direct information about p’(é,qo). However, by
fitting an analytic, differentiable function of ¢ to the
projection data at each angle, we could obtain an expression
for p’(€.¢). If p’(£.¢) had an auspicious functional form,
we would then be able to solve the integrals in equation (3)
in closed form.

B. Interpolating and smoothing splines

To obtain an expression for the sinogram that is analytic
and differentiable with respect to the variable £, we fit a
function to the projection data at each angle. That is, for each
angle @, we fit a one-dimensional function of &, p, (¢),
to the sinogram values p, (f,) measured on the ZN+ 1
abscissas £, (i=-N,...,N). If the data is noiseless, it is
desirable to use a function that passes through the points
pwl(é,.), which we call an interpolating curve, while if the
data is noisy a smoothing curve may be more appropriate.
One fitting framework that can handle both of these
situations is known as penalized least-squares [11], in which
the function p, (&) is chosen to be the minimizer of the

functional

N 2 H 2
Flb, ()] = 2[ro (&)=, (6)] +2] (52 (8] aE. @
1==N a

where a and b are the endpoints of the interval on which the
curve p, (£) is to be defined. The first term in equation (4)
is the familiar squared-error measure, while the second is a
measure of the smoothness of the fit curve. The parameter A
thus mediates the tradeoff between the competing goals of
achieving a good fit to the data and maintaining a smooth
curve. By choosing A to be zero, we eliminate the
smoothness constraint and ensure that the minimizing curve
will be an interpolant to the data; if A grows large, the
smoothness constraint dominates and the curve approaches a
linear fit to the data. For intermediate values of A the
minimizing curve balances the goodness-of-fit and
smoothness constraints. The parameter A can be chosen a
priori [13] or it can be determined from the statistics of the
data using an automatic procedure such as generalized cross-
validation (GCV) [14].

The minimizers of this functional F belong to the class
of functions known as natural cubic splines [13]._ These are
piecewise polynomial curves that join at the apsc1ssa values
&,, where they are continuous up to and including the second
derivative. They can be represented as

ﬁw,(é) =q +b,-€ +¢ §Z/2+d.‘ 53/3' 56[‘51‘5;+1]v )

where a,, b, c,, and d, are constants that fully specify the

spline curve on the interval [éi.ém]. Of interest to the
Radon inversion problem is the fact that we can approximate

the first derivative of the sinogram for fixed angle @; by

p(E0,) 28, (&) =b rebrdd  Le[8.bu] ©




C. Spline-based inverse of the 2D Radon transform

Given this analytic expression for the derivative of the

sinogram, we can proceed with the inversion of the two-
dimensional Radon transform in equation (2). While the
sinogram now has a continuous representation 1n the yanab]e
&, it is still discrete in the angular variable. Assurzlmg thact
the M angular samples are equally spaced over 180 or 360
(the result is the same in either case), the integral in equation
(2) can be approximated by the sum

M
f(r.6)= 5;15 J.o(0,):

@)
where J, (pg is given by equation (3). For a.giyen
coordinate r,j ) in image space, and for a given projection
angle ¢ . & =rcos 9—¢j). We label the projection bin
that &’ ‘falls in by m. ;hat is, é'e[;",,g'ml]. Using the
expression for p’(g,q;) given by equation (6). J,_e((olj can
be expressed as

N—ls|bl+i€+dlél
ole)= L] 2
12m > i (8)
[ e, S da 8y T batenE
+L‘L‘3M AN 4'

where the integrals of equation (3) are now expressed as sums
of integrals over the subintervals between the original
abscissa points, with appropriate accommodation for the
singularity at &’. These integrals can be solved in closed
form [10]. and the resulting expression contains some
potentially unstable terms. However, by combining these
terms in a particular way and invoking spline identities. a
stable form can be derived. The details are given in appendix
A. where the final expression for j,ﬁ((p}) is shown to be

J,'f,((o,)szL i (b,+c‘§’+d‘§’2)ln[

ez
S Q.]
r2-N . é, — S

2m=-lmms+l
N
r_x -
sl

e 2N E) xS af(E-E) =
2

e

==\ - i==N

where T is given by equation (A.4) of appendix A.

D. The 3D Radon transform in coordinate space

The essential problem in three-dimensional computed
tomography is the reconstruction of a distribution fx.y.2)
from knowledge of the discrete planar-integral sinogram
p(£,.6,.0,), where i=-N...N. j=l..M. and
.= 1.....M, [15). In general, these planar integrals are not
measured directly by tomographic imaging systems. but
must rather be calculated by “rebinning” the line integrals
that are measured directly [9].

The inverse three-dimensional Radon transform has a
form similar to the two-dimensional case, with a few
differences that greatly simplify the task of evaluating it
numerically. Specifically,

flevs)= 5]

4’

p”(£.6.¢) sin8dpdb. (10)

Oty

where

£’ = xsinBcos @ + ysin@sin @ + zcos 6. (1

and p”(£'.6.9) is the second derivative of the three-
dimensional sinogram with respect to E’. This expression
differs in two principal ways from the expression for the two-
dimensional inverse Radon transform given by equations (2)
and (3). First, it now involves the second derivative of the
sinogram with respect to &’ rather than the first derivative
and second. the convolution in & has disappeared. This
reflects the fact that an inverse Radon transform of odd degree
can be calculated using purely local information—the value
of the image at a point (x,}',:) can be determined solely
from information at points in the sinogram space that
(x,y.z) projects onto, rather than from a convolution
integral over all points in sinogram space as in the even-
dimensional case [5,16].

E. Spline-based inverse of the 3D Radon tr&nsfonn

As in the two-dimensional case, we wish to fit an analytic
function of & to each sequence of &, labeled by a distinct
pair {goj .6, t. We do so using the spline formalism described
above and obtain

boo(E)=a+bE+c & 2+d 8/, gelg ] (12

Consequently the second derivative of the sinogram is
approximately

p”<é~9k'¢,)zﬁg,,el(é)zcx+2d;§~ éeléﬂénll‘ (13)

Now as in the two-dimensional case, the discreteness of the
angular samples means that the two integrals give way to
sums and we write

flxoy '):—-1——1——1—Mu iJ (9 Q )sin@ (14)
T aM, M, SETT A B
where
Jo600,)=c +248 &e[é8u] (15)
and
&= xsinB, cos@, + ysin 6, sing, +zcosb,. (16)

The simplicity of the three-dimensional inversion i1s now
apparent, for the functions J can be evaluated in a
straightforward manner whereas in the two-dimensional case
evaluation of the functions J involved performing a
complicated integral over § and taking care in handling
numerically unstable terms.

F. Application to phantom and real data

In order to demonstrate that the 2D direct-spline inverse of
the Radon transform produces images of comparable or
superior quality to filtered backprojection (FBP), we
reconstructed images of a numerical Hoffman brain phantom
[17] using both methods. The sinogram consisted of 128
simulated noiseless projections of the phantom, taken over
360° and each comprising 400 projection bins. The sinogram
contained a total of 1.72x108 counts. We first reconstructed
the phantom using standard area-weighted FBP with a ramp
filter (cutoff=1.0 times the Nyquist frequency). We then fit an




olating spline to the data at each of the 128 projection

interp . A
, d used the 2D direct-spline technique to reconstruct.

angles an

Poisson noise was then added to the sinogram. Images
were reconstructed using FBP with a ramp filter (cutoff=1.0)
a5 well as the direct-spline technique using an interpolating
spline in order to see how the algorithms compared in the
presence of noise without prior smoothing. Smoothing
splines were then fit to the projection data at each angle,
using GCV to determine the smoothing parameter. and an
image reconstructed from the coefficients using the direct-
spline method. In order to examine the performance of FBP
in the face of data with the same degree of smoothness, we
sampled these smoothing splines to generate a discrete
sinogram that was reconstructed using FBP with a ramp filter
(cutoff=1.0).

For the 3D case, we reconstructed images of a Data
Spectrum ventricular phantom from projection data acquired
on a Picker XP3000 three-headed SPECT system fitted with
high-resolution, parallel-hole collimators. The phantom was
filled with 3.27 mCi of Tc-99m and placed at the center of
rotation. Each head collected data on a 128x128 grid and at
120 projection angles over 360°. We rebinned the projection
data from a single head to generate planar integrals on a
128x60x120 grid. Images were reconstructed from this
planar-integral data using 3D FBP, and also using the 3D
direct-spline inversion method after splines were fit to the
data as described in section II.LE. We then fit smoothing
splines to the planar-integral data and reconstructed directly
from the spline coefficients. Finally, we sampled the
smoothing splines to generate a smoothed. discrete sinogram
and used that as input to the 3D FBP algorithm.

G. Resolution, noise, and signal-to-noise studies

G.1. Resolution

~ In order to compare quantitatively the resolutions of the
dlrect-spline algorithms (both two- and three-dimensional)
with their FBP counterparts, we acquired projection images
of a small (1 cm) spherical lesion containing 7.6 mCi of Tc-
99m placed in an 800 cc cyiindrical phantom containing cold
(zero-activity) water. A Picker XP2000 two-headed SPECT
system fitted with ultra-high-resolution, parallel-hole
collimators was used. The heads rotated at their minimum
radius of rotation (9 cm) and acquired 120 views over 360°
onto a 128x128 matrix (pixel size=4.67 mm).

~ For the two-dimensional algorithms. we extracted the 2D
sinogram corresponding to the slice through the center of the
lesion and réconstructed images using FBP with a ramp filter
(cutoff=1.0) as well as using the direct spline inversion with
interpolating splines. The reconstructed lesion was
approximately a symmetric 2D Gaussian in shape and we
determined its full-width half-maximum by collapsing it into
a one-dimensional function and fitting this profile with a
Gaussian curve. For the three-dimensional reconstruction
algorithms, we rebinned the projection data to generate
planar-integral data on a 128x60x120 grid. We then used 3D
FBP and the 3D direct spline method (using interpolating
splines) to reconstruct the slice through the center of the
lesion and determined the FWHM of the resulting Gaussian
by the same method as above.
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In order to isolate the contribution of the reconstruction
algorithm to the FWHM of the lesion in the reconstructed
images, the contribution from the lesion’s inherent width as
well as the imaging system’s point-spread function had to be
removed. The net effect of these two factors was estimated by
determining the average FWHM of the lesion as it appeared
in the 120 projection images. Assuming then that the
reconstruction algorithms could be characterized by Gaussian
point-spread functions, the FWHM of these functions were
determined by subtracting (in quadrature) the average
projection FWHM from the FWHMs of the reconstructed
lesions discussed above.

G.2. Noise Levels

To characterize the noise level in images reconstructed by
the direct-spline methods and their FBP counterparts, we
acquired 20 1-minute projection datasets of the same 800 cc
cylindrical phantom used in the previous section, this time
containing 3.7 mCi of Tc-99m and no lesion. One slice of
this uniform cylinder was reconstructed for each of the 20
datasets using 2D FBP, 3D FBP. 2D spline inversion, and
3D spline inversion (both of these using interpolating
splines). For a given algorithm, the same six circular regions
of interest (ROI) were examined in each of the 20 slices and
the coefficient of variation (the standard deviation of the pixel
values in the ROI divided by the mean of the pixel values in
the ROI) calculated for each of the 120 ROIs. The average of
these 120 coefficients of variation was then computed.

G.3. Signal-to-noise ratio

It is not uncommon for a reconstruction algorithm to
offer enhanced resolution at the price of amplified noise. The
overall effect of such a tradeoff is sometimes better
characterized by computing a signal-to-noise ratio (SNR). We
used the two datasets described above to compute so-called
ideal-observer SNRs. The ideal-observer framework [18]
offers a way of assessing the amount of information the data
output by an imaging device (possibly modified by 1mage
processing) contains with regard to the performance of a
specified task. For linear imaging processes in which the
noise in the output image 1s assumed to be additive.
Gaussian. zero-mean, stationary, and independent of the
presence or absence of the signal. the ideal-observer
framework allows us to characterize fully the quality of the
imaging system data with respect to the performance of the
specified signal-detection task with a single number, the ideal
observer SNR. This can be expressed as

SNR? = f—————d’AS”“’(U)l v, (an
w(v)
is the power spectrum of the signal in

t has been degraded by the imaging
nd W(v) is the

2
where |AS,, (V)|
output space, i.e. after i .
system and possibly image processing, 4
Wiener spectrum.

In order to calculate
reconstructed images, we reg
of the cylinder alone describe
of so-called background images.
the lesion described in section
factor (chosen in this case to pro

the ideal-observer SNR of the
ard the 20 reconstructed images
d in section G.2 as an ensemble
By adding the projections of
G.1 with a suitable scaling
duce a 6:1 lesion-background




concentration ratio) to the projections of the cylinder and then
reconstructing, we can generate an ensemble of signal-plus-
background images. Then ,ASM,(U)|“ is easily determined by
computing the power spectrum of the difference between the
two ensemble averages. The Wiener spectrum W(v) can be
computed from the ensemble of background images. The
detailed procedure for the calculation is as follows:

1. The lesion projections were scaled t0 simulate a desired
lesion-background concentration ratio (6:1 in this case) and
added to each of the 20 sets of background projections.

2. Images of the slice through the center of the lesion were
reconstructed for the 20 signal—plus—background datasets using
eight different methods: the 2D spline-based inversion yvith
interpolating splines. 2D FBP with a ramp filter
(cutoff=1.0), the 2D spline—based inversion using smoothing
splines. 2D FBP using a sinogram sampled from these
smoothing splines, the 3D spline-based inverse using
interpolating splines. 3D FBP, the 3D spline-based inverse
using smoothing splines, and 3D FBP using a sinogram
sampled from these smoothing splines.

3. The 20 corresponding sinograms of background alone were
reconstructed in the same eight ways.

4. An average signal image was determined for each
reconstruction method by subtracting the average of the 20
background reconstructions from the average of the 20 signal-
plus-background reconstructions. The signal power spectrum
was computed by squaring the Fourier transform of this
image.

5 While SPECT images are not stationary in general. the
attenuated projections of a uniform cylinder of this diameter
are quite flat over a broad central region. and thus one might
reasonably expect the reconstructed images of this cylinder to
be locally stationary near their center, precisely where the
lesion is expected to lie [19]. A “local” Wiener spectrum 1n
this region was thus computed from the 20 images of
background alone by subtracting the average background
image from each of the individual background images,
resulting in 20 noise images. Each such image was
multiplied by a circularly symmetric window of the form:

wir)=1 for|r|<0.9R,
wir)=0.5x(l+cos(m(jr|]-0.9R)/0.2R).

for 0.9R <|r| < 1.1R. and
w(r)=0 for|r|>LIR,

(19)

where R is the radius of the circular region over which the
noise is expected to be stationary (chosen to be 6 pixels) and
r the radial position in the image. The power spectrum of
each of the 20 images was computed by taking the square of
the Fourier transform of the resulting image. The 20 power
spectra were then averaged and scaled so that the volume
under the Wiener spectrum equaled the average variance in the
circle of radius R [20-22].

6. The ideal-observer SNR was then determined by summing
the quotient of the calculated signal spectrum and Wiener
spectrum.

The ideal-observer SNR of the raw projection data
represents an upper bound on the ideal-observer SNR of the

reconstructed images, a point that 1s discussed further in
section IV. Because the noise in the projection data is
uncorrelated. the ideal-observer SNR can be computed using a
simpler expression than equation 7,

SNR? = As'(diag{(p(él,(pj )}})_l As. (18)

where As is the signal projection in the spatial domain
expressed as a one-dimensio al vector, diag{ } denotes a
diagonal matrix and 2{7(5,.,(;)}» is the noise-free background
projection data [23]. This is es imated by the sample mean of

the 20 noisy background projection datasets.

Finally, it should be noted that in using the ideal-
observer framework at all it is implicitly being assumed that
the data satisfies the assumptions discussed above: that the
system is linear and that the noise in the planar or
reconstructed images is additive, Gaussian, stationary, zero-
mean. and independent of the presence or absence of the
signal. Given the reasonably high count levels ¢(~10-
15/pixel), the fact that the signal is relatively small and low
contrast, and the discussions of stationarity above, these
assumption about the noise are not unreasonable. The
requirement of linearity seemingly undermines the use of the
framework to analyze images that are reconstructed from
smoothing splines that have been fit using an adaptive, and
thus non-linear algorithm. However, what is truly required
for equation (17) to be meaningful is not linearity in the face
of any possible input but more specifically that the system
transfer function be the same whether the particular signal of
interest is present or absent from the particular background of
interest. Again, because the signal in question is relatively
small and low contrast. it should not greatly affect the noise
properties of the projection images and thus the use of
smoothing splines should yield a similar effective system
transfer function whether the signal is present or absent.

Figure 1. Reconstructions of a Hoffman brain phantom from
simulated projections without noise (a-b) and with Poisson noise
added (c-f). Reconstruction methods are: (a) FBP with ramp filter
(cutoff=1.0), (b) direct-spline inversion using interpolating
splines, (¢) FBP with ramp filter (cutoff=1.0), (d) direct-spline
inversion using interpolating splines, (¢) FBP from a sinogram
generated by sampling smoothing splines, (f) direct-spline
inversion using smoothing splines.




III. RESULTS

The results of reconstructing the Hoffman brain phantom
with and without noise using both the 2D direct-spline
inverse and 2D FBP are depicted in Figure 1. The algorithms
clearly yield qualitatively similar results.

The results of reconstructing the ventricular phantom data
using 3D direct-spline inversion with interpolating splines,
3D FBP, 3D direct-spline inversion with smoothing splines,
and 3D FBP using a sinogram resampled from the smoothing
splines are depicted in Figure 2. The algorithms are again
seen to yield qualitatively similar results.

The resolution measurements for the four basic
algorithms—2D direct-spline inversion, 2D FBP with a ramp
filter (cutoff=1.0), 3D direct-spline inversion, and 3D FBP—
are summarized in Table 1. The results indicate that the
direct-spline inversions have superior resolution to FBP in
both the 2D and 3D cases and also that the 2D algorithms
have superior resolution to the 3D algorithms.

The results of the noise study are summarized in Table 2
where it can be seen that the noise level in the direct-spline
reconstructions is higher than that in the FBP reconstructions
and that the noise level in the 2D reconstructions is higher
than that in the 3D reconstructions.

Figure 2. Selected slices of a ventricular phantom reconstructed
by (a) 3D direct-spline inversion using interpolating sphines. (b)
3D direct-spline inversion using smoothing splines. (¢) 3D FBP.
and (d) 3D FBP from a sinogram obtained by sampling the
smoothing splines in (b).

Figure 3. Reconstructions of a selected slice of a cylindrical
phantom containing a spherical lesion. Reconstruction
methods: (a) 2D direct-spline inversion using interpolating
splines, (b) 2D direct-spline inversion using smoothing splines.
¢) 2D FBP, (d) 2D FBP from a sinogram obtained by sampling
the smoothing splines in (b), (¢) 3D direct-spline inversion
using interpolating splines, (f) 3D FBP, (g) 3D direct- spline
inversion using smoothing splines. (h) 3D FBP from a sinogram
obtained by sampling the smoothing splines in (g)
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Finally, the ideal-observer signal-to-noise ratio results are
summarized in Table 3 for the four basic algorithms as well
as their counterparts using smoothing splines. We observe
that the direct-spline algorithms have slightly lower SNRs
than their FBP counterparts when using interpolating
splines, while the SNRs become comparable when using
smoothing splines. Furthermore, the use of smoothing
splines seems to have little effect on SNR in the 2D case
while degrading it in the 3D case. All of the reconstructed
images are seen to have lower SNRs than the raw projection
data, a fact that is discussed in greater detail in the next
section. Typical images reconstructed using each ot these

eight methods are shown in Figure 3.

Table 1
FWHM of in-plane reconstruction point-spread functions

Algorithm FWHM
2D direct spline 1.6 mm
2D FBP 4.5 mm
3D direct spline 3.9 mm
3D FBP 5.0 mm

Table 2
Coefficients of variation for various reconstruction algorithms

Algorithm Cov
2D direct spline 0.60
2D FBP 0.39
3D direct spline 0.34
3D FBP 0.23

Table 3
Ideal-observer SNRs for various reconstruction algorithms

Algorithm Ideal-observer SNR
Sinogram 10.7
2D interpolating spline 7.9
2D FBP 8.6
2D smoothing spline 8.4
2D FBP w/ smth. spline 8.4
3D interpolating spline 9.0
3D FBP 9.6
3D smoothing spline 7.5
3D FBP w/ smth. spline 7.0

[V. DISCUSSION AND CONCLUSIONS

As discussed in section I, the principal difference between
the 2D and 3D direct-spline inversion algorithms and FBP is
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in the nature of the interpolation step upon backprojection.
The interpolation in FBP is simply less accuraté thgm the
more sophisticated cubic-spline interpolation L'lSCdV in the
direct-spline method. The cruder FBP interpolation 15 more
likely to smooth over high-frequency variations in th;
projection data than is cubic-spline mtcmolatxon, and thu; it
is not surprising that the FBP algorithms have mfenqr
resolution to the spline-based algorithms, as illustrated in
Table 1. However, because the high-frequency components of
the data include considerable noise as well, the FBP
algorithms would be expected to produce less noisy
reconstructions than the spline-based reconstructions. This
expectation is confirmed by the results of the noise study
reported in Table 2.

The 3D direct-spline and FBP algorithms are both seen to
have inferior resolution and lower noise levels than their 2D
counterparts. This can be attributed to the fact that the 3D
reconstruction process involves an additional averaging or
smoothing step which occurs when the raw projection data is
rebinned into a planar-integral sinogram by performing area-
weighted forward projections of the 2D projection data at each
projection angle.

Table 3 lists the ideal-observer SNR for the raw
projection data and for the various reconstruction approaches.
It is a fact that processing or even image reconstruction ¢an
never improve the ideal-observer SNR over that found in the
raw projection data. However, these operations can certainly
diminish the SNR if they are in some way singular and if the
signal vector has components in the null space. We observe
that all the reconstructed image SNRs are in fact lower than
that of the raw projection data. The differences among those
reconstructed image SNRs give some clue as to how much of
the information contained in those projections is preserved in
the reconstructed image. For instance, we see that ideal-
observer SNRs are slightly lower for the 2D and 3D direct-
spline inversions using interpolating splines than for their
FBP counterparts using ramp filters. For this particular
detection task. then, the interpolating-spline algorithm’s
amplification of noise outweighs the improvement 1t affords
in resolution relative to FBP. However, when the noise is
mitigated prior to reconstruction, as when the projection data
has been fitted with smoothing splines, the SNR gap
between the spline algorithms and FBP is considerably
narrowed in the 2D case and reversed in the 3D case. This
suggests that the spline-based algorithms may be of greatest
use when resolution is paramount and the data contains
relatively little noise, a situation more often encountered In
computed tomography than in nuclear medicine.

The use of smoothing splines is seen to provide little or
no improvement in SNR in the 2D case. Smoothing does
affect the ideal-observer SNRs in the 3D case, but for the
worse. It is clear from examining the images of Figure 3 that
the reconstructed images using 3D algorithms and smoothing
splines have an oversmoothed appearance. This can most
likely be attributed to the fact, mentioned above. that the 3D
reconstruction process effectively involves a prior smoothing
during the rebinning step. The adaptive smoothing algorithm
certainly makes allowances for the lower variability 1n the
rebinned data and smooths this data less than it would the raw
projection data. However, the modified statistics of the
rebinned data simply do not agree as well with the statistical

model assumed by the smoothing algorithm, so it is perhaps
not surprising that it yields a sub-optimal result. It remains a
topic for further investigation as to whether smoothing the
raw projection data prior to the rebinning step produces a
better result.
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APPENDIX A
This appendix supplies the details connecting equation (9) to equation (8). Solving the integrals in equation (8) yields

5a(o)= S edé)l[—j—gi] S+ 24880 - )
o o (A1)

+% ,jz:ldi[(él_ éi)z _(ﬁl - éul)z]‘*'(bm +cm(:—'+dmé/2)ln( ;/—lej .

There are three terms in equation (A.1), containing In{(&-¢&, )/ (&' =& Inl(¢" =&,/ (&'-¢,.)) and
In[(E" &)/ (&, — &), respectively, which are numerically unstable when &’ is near &, in the case of the first term, near
£,., in the case of the second, or near either in the case of the third. The three terms, whose sum we denote as T are
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Spline identities that follow from the fact that a cubic spline has continuous first and second derivatives at £,
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and a similar pair reflecting the continuity at &,., can be used to remove the singularities in equation (
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’ ’ ’ ’ 2 ’
T = (bm—l + cm—lé + dm—lg z)ln(é - ém-l ) + (dm - dm—l)(é - érH) 1n(é - é’") (A4)

(s 42 E = &) (G =)= (s 00+ )08 =)
(5’—5,")2 ln(é’—ém)—>0 as &' — &, and

A.2). Using these

in which the second and third terms pose no numerical instability because
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Hence the final expression for J,_g((pj) is given by
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Abstract

Scintimammography. a nuclear-medicine imaging
technique that relies on the preferential uptake of Tc-99m-
sestamibi and other radionuclides in breast malignancies, has
the potential to provide differentiation of mammographically
suspicious lesions. as well as outright detection of
malignancies in women with radiographically dense breasts.
In this work we use the ideal-observer framework to guantify
the detectability of a I-cm lesion using three different
imaging geometries: the planar technique that is the current
clinical standard. conventional single-photon ‘emission
computed tomography (SPECT). in which the scintillation
cameras rotate around the entire torso, and dedicated breast
SPECT. in which the cameras rotate around the breast alone.
We also introduce an adaptive smoothing technique for the
processing of planar images and of sinograms that exploits
Fourier transforms to achieve effective multidimensional
smoothing at a reasonable computational cost.

For the detection of a I-cm lesion with a clinically
typical 6:1 tumor-background ratio. we find ideal-observer
signal-to-noise ratios (SNR) that suggest that the dedicated
breast SPECT geometry is the most effective of the three,
and that the adaptive, two-dimensional smoothing technique
should enhance lesion detectability in the tomographic
reconstructions.

. INTRODUCTION

Breast cancer is the most frequently diagnosed invasive
malignancy among American women and ranks second only
to lung cancer in annual cancer-related mortality for this
group [1]. Numerous studies have shown that early detection
and treatment of breast cancer can improve survival rates [2-
4]. Screen-film mammography has come to play a vital role
in this detection process. due 1o its high (80-90%) sensitivity
to breast malignancies. However. mammography is
notoriously poor at distinguishing benign from malignant
tumors. having reported specificities and positive predictive
values of 15-30% [5]. This means that only a small
percentage of lesions biopsied on the basis of suspicious
mammographic appearance are found to be malignant.

In recent years, researchers have developed and studied 4
nuclear-medicine test with the potential to provide relatively
low-cost. minimally invasive differentiation of breast
abnormalities identified by physical examination or
mammography [6-18]. Known as scintimammography, the
test relies on the preferential uptake of Tc-99m-sestamibi or
other radionuclides such as TI-201, Tc-99m- tetrofosmin. or
Tc-99m-MDP in breast malignancies as compared to normal
breast tissue or benign abnormalities. Indeed. one study has
shown that typical in vivo tumor-background concentration
ratios of Tc-99m-sestamibi are 5.64%+3.06 [19]. This focal
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uptake can be imaged in a number of ways. though the most
widely used clinical protocol involves acquiring one or two
planar views—one lateral view and possibly an additiona]
oblique or anterior view—while the patient lies prone on g
specially designed table [20]. The imaging time’is typically
10-15 minutes per view. Numerous clinical studies with
histological follow-up have been performed using this or a
similar protocol. reporting sensitivities of 83-96%. and
specificities of 66-100% when using Tc-99m-sestamibi to
image mammographically suspicious lesions [8-18). In
addition to differentiating breast abnormalities detected by
other means, scintimammography may also have a role in
the detection of breast malignancies in patients with
radiographically dense breasts. for whom screen-film
mammograms are often difficult to interpret [7].

A few of these studies of scintimammography have also
examined the role of conventional SPECT (where the patient
lies supine and the camera circles the torso) in detecting focal
uptake of Tc-99m-sestamibi and have found comparable but
not generally improved sensitivities as compared to planar
techniques. along with substantially lower specificities
(14.21-23]. Wang ez al. [24] speculated that this surprisingly
poor performance was due to substantial attenuation of
photons emitted in the breast by the torso in at least half of
the views as well as to the presence of scatter from organs
such as the heart and liver known to have high uptake of Te-
99m-sestamibi. The poor performance of conventional
SPECT may also be related to the inferior resolution of
conventional SPECT as compared to planar techniques in
this situation, due to the fact that the scintillation cameras
arc on average further away from the breast in the
conventional SPECT geometry than in the planar geometry.
Wang er al. also investigated a geometry that they called
vertical axis-of-rotation SPECT and that we call dedicated
breast SPECT, or simply dedicated SPECT. in which the
scintillation cameras are assumed to rotate around one breast
alone. This geometry eliminates the effect of attenuation by
the thorax and. with proper shielding. the effect of scatter
from the thorax. Moreover. the small radijus of rotation offers
improved resolution and sensitivity. In phantom studies.
Wang er al. found that with this dedicated geometry they were
able to detect a breast lesion with an outer diameter of I cm
and a 6:1 lesion-to-background concentration ratio that was
not detectable in either conventional SPECT or planar studies
with the same total imaging time.

The present work examines quantitatively the question of
lesion detectability in these three different geometries—
planar, conventional SPECT, and dedicated SPECT—using
the so-called ideal-observer framework to calculate signal-to-
noise ratios as a function of lesion concentration for the
different geometries. and, in the case of the tomographic
geometries, for different reconstruction filters. It also
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introduces and applies an adaptive smoothing technique for
the processing of planar images or sinograms that exploits
Fourier transforms to achieve effective multidimensional
smoothing at a reasonable computational cost. Such pre-
processing is found to improve idealized lesion detectability
in the reconstructed images.

II. METHODS

A. Effective multi-dimensional smoothing

The projection data acquired by tomographic nuclear-
medicine imaging devices is invariably contaminated by
noise, which is propagated and often amplified by the
reconstruction algorithm. Filtered backprojection (FBP), the
most computationally efficient and most commonly used of
these algorithms, attempts to control this noise by
incorporating an apodization window. such as a Hanning
filter. into the projection filtration step. Alternatively. in
some reconstructions. only the mathematically exact ramp
filter is applied to the projection data. but the reconstructed
image is subjected to a two- (or three-) dimensional post-
filtering. While somewhat different in application and effect,
these two approaches have the common property of being
linear; the degree of smoothing applied to the data does not
depend on the data, but is rather fixed a priori. and this same
degree of smoothing is applied uniformly to the entire
dataset.

In contrast, non-linear, adaptive smoothing methods. such
as the generalized cross-validation method to be discussed
below. determine the degree of smoothing to be applied to
various specified subsets of the data from the statistics of
each such subset and the degree of smoothing can vary from
subset to subset. For instance, in 2D image reconstruction,
the data at each projection angle could be smoothed
differently, with the degree of smoothing determined from the
statistics of the data at each angle.

When smoothing for 2D image reconstruction, one would
in principle like to exploit the statistical correlations between
different projections as well as those within a given
projection. A truly 2D adaptive smoothing operation of this
type can be computationally expensive and difficult to
implement [25]. However. by exploiting the properties of the
Fourier transform. one can achieve effective 2D smoothing at
the cost of a series of 1D smoothing operations. Consider a
2D discrete sinogram p(&,.6,). where & refers to the ith
projection bin (i=1.....N) and 6, the jth projection angtle
(j=1...M). It can be shown [26] that the following sequence
of operations is equivalent to an adaptive. 2D smoothing of
the sinogram:

1. Take a 1D discrete Fourier transform of the sinogram with
respect to the projection angle 6 ; the result can be viewed as
a set of 1D functions of the untransformed variable . each
labeled by an angular frequency index k. i.e. P (&,).

2. Perform an adaptive 1D smoothing of each of these M

functions of <, yielding M discrete smoothed functions
P (&), where the superscript s stands for smoothed.

3. Perform an inverse 1D discrete Fourier transform of
P; (&) with respect to the angular frequency & to ICCO\r:

p’(&.6)).

The adaptive 1D smoothing we perform on each of the y
functions P, (&) is known as penalized least-squares
smoothing [27.28], and involves fitting the discrete data wiy,
a continuous smoothing curve P;(&) that minimizes the
functional

SP©) = Y[ PE) P& cafipl e

=] 0

where £ is a continuous variable representing the posiuen
along a given projection, T is the total length of the
projection. and the double prime denotes the second denvatine
with respect to &. The two terms in this functional represent
the competing goals of achieving a good fit to the data while
maintaining a smooth curve, with the parameter mediating
the tradeoff. For instance, if o is zero, the smoothness
constraint disappears and the minimizing curve will be 2
piecewise linear interpolant to the data: if 0. grows large. the
smoothness constraint dominates and the curve approaches 3
simple linear fit to the data. For intermediate values of a, the
minimizing curves balance the goodness-of—fll and
smoothness constraints. It can in fact be shown that {hf
minimizers of this functional will always be members (:' 3
class of functions known as natural cubic splines [37-~_34]_'
These are piecewise cubic curves that join at the ﬂbSC“"‘
values &,. where they are continuous up to and including the
second derivative.

. . of
Clearly the choice of o determines the degree
paramete

smoothing that is applied to the data, and it is this o
that is determined from the statistics of the data itself 12 :
adaptive implementation of penalized least-squares Sm(?Ol .’0;
using an algorithm known as generalized cross-vahdan o
[29]. Thus a generally different o is used in the smoothing "
each of the M functions P, (¢&,). The resulting CO“‘,‘“U(Ihé
smoothed functions P, (£) must then be sampled to ¥1¢ e
discrete functions P;(&,) which are subjected t0 the 1nVver

DFT in step 3 above.

It should also be noted that while we ha ) he
of simplicity, discussed effective 2D smoothing:
technique can be extended to any number of dimensions- an
smooth an n-dimensional function, one can simply [akehen
(n-1)-dimensional Fourier transform of the function and :nc
perform a set of 1D smoothings over the untransfor .
variable prior to taking an inverse (n-1)-dimensiond Fou
transform (26].

ve, for the 5"’1“:

B. Ideal Observer Framework

The ideal-observer framework [30] offers @ way O:l
assessing the amount of information the data from
imaging device contain with regard to the perfOrmancf: Ohg
specified task. For example, the simplest such t
detection of a signal of known strength, shape, and
in a specified background. In this case, the framewor
to quantify the degree to which an ideal observer—on¢ lles!
can use the information contained in the images IO.il_S fu
extent—can reliably distinguish images containing
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background alone from images containing the background and
the signal when both kinds of images are corrupted by noise.
blurring. and other 1mpertectlons For linear imaging
processes in which the noise in the output image is assumed
to be additive. Gaussian. zero-mean, stationary. and
independent of the presence or absence of the signal. the
ideal-observer framework allows us to characterize fully the
quality of the imaging system data with respect to the
performance of the specified signal-detection task by a single
number, the ideal-observer signal-to-noise ratio (SNR). This
is usually expressed as

MTF*(v)
) dv

where K is the large-scale transfer characteristic of the
imaging system at the desired operating point, MTF(v) is
the system modulation transfer function, W(v) is the system
Wiener spectrum and |AS,, (v v)[ is the power spectrum of the
signal in input space. i.e. before it has been scaled and
degraded by the imaging system. This expression allows one
to determine the ideal-observer SNR for any analytically
specified input signal once K. MTF(v). and W(v) are
known. Alternatively. if one wishes to determine the ideal-
observer SNR for a particular real signal. equation (2) could
be re-expressed as

(2)

K[ |as, (v |

SNR; = | ——d( V) (3)
W(v)

where |AS,W,(U)i' is the power spectrum of the signal in
output space. i.e. after it has been scaled and degraded by the
imaging system. This is the form we will use. because by
acquiring an ensemble of images containing the signal and
the background as well as an ensemble of images containing
the background alone. \ASW, )[ can be easily determined by
computing the power spectrum of the difference between the
two ensemble averages.

Finally. when the noise in an image is uncorrelated. the
ideal-observer SNR takes on a particularly simple form.

SNR; = As'(diag{Hf})" As 4)

where As is the signal vector. diag{ } is a diagonal matrix
and Hf is the noise free projection data [31].

C. Data Acquisition and Processing

As discussed above. computing the ideal-observer SNR
for a given imaging geometry and processing approach
requires two ensembles of images: one set consisting of
images of the signal and background together and one set
consisting of images of the background alone. In order to
preserve the flexibility to compute the ideal-observer SNR
for lesions of varying concentration. we acquired high-count
projection images of the signal alone (i.e.. in a cold
background), which could be scaled as desired and added to the
ensemble of background projections alone to produce an
ensemble of signal-plus-background projections. These were
then either analyzed directly for the planar geometry or
processed and reconstructed for the tomographic geometries.
of course for linear techniques, we could have computed
|AS,. ( \ from the images of the signal alone. because the
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difference between the ensemble averages in this case 1s
simply equal to the ensemble average of the difterences—the
signal we added to the background ensemble. However. this
equivalence does not generally hold for non-linear techniques
such as the adaptive smoothing being investigated.

Our phantom consisted of an l14-cm diameter. 800 cc
cylinder with a I-cm outer diameter spherical lesion insert.
This lesion size is representative ot the smallest currently
detected in scintimammography. For each geometry we
acquired 20 images of the background alone. for which we
put 3.7 mCi of activity in the phantom and imaged for |
minute total for each conventional or dedicated SPECT
acquisition and 30 seconds for each planar view. These
combinations of activity and imaging time were chosen to
produce clinically realistic count levels using the following
reasoning. As with Wang er al.. we began with the
assumption that 1% of a typical 25 mCi clinical dose of Tec-
99m-sestamibi is taken up by the myocardium. Using the
volume of the mvocardium in the Data Spectrum
Corporation cardiac insert as a guide. along with the
assumption that soft tissue will have a 1:15 concentration
retative to the myocardium allowed us to determine the
expected concentration of activity in healthy breast tissue.
We wished to compare detectability in these three geometries
given the same total imaging time. and assumed that typical
clinical imaging times would be 30 minutes per SPECT
study and 15 minutes per planar view. Thus we were
comparing the three geometries for equal total imaging times
given that two-view planar studies are common. Given this,
we scaled up the calculated concentration by a factor of 30
and scaled down the imaging times by the same factor to
allow for more rapid data acquisition. All imaging times were
adjusted to compensate for the decay of the activity. To
image the lesion we filled it with 7.6 mCi of Tc-99m, placed
it in the cylinder now filled with cold (zero-activity) water,
and imaged for 30 minutes in conventional and dedicated
SPECT and 20 minutes for the planar view. This
combination of activity and imaging time was chosen simply
to provide high-count. low noise images of the signal. which
could be scated appropriately and added to the background
images.

The dedicated SPECT images were acquired by placing the
phantom at the center of rotation of a Picker XP2000 two-
headed SPECT system with the heads rotating at the
minimum radius of rotation (9.0 cm). In this configuration
the heads were within 2.0 ¢cm of the walls of the phantom.
The breast phantom was not attached to an anthropomorphic
torso phantom because Wang er al. showed that with proper
shielding the contribution of scatter from the torso can be
made negligible. We acquired 120 views over 360° with each
head acquiring to a 128x128 matrix (pixel size=4.67 mm).
We used a low-energy. ultra-high resolution collimator. The
conventional SPECT images were also acquired in the
absence of an anthropomorphic torso phantom, although the
radius of rotation (25 ¢m) and the placement of the breast
phantom (17 ¢m off-center) were determined with the torso
phantom in place. The reason for this curious arrangement
was o isolate the effect of the large radius of rotation on
lesion detectability, without the additional degradations
caused by attenuation or scatter in the torso. The ideal-
observer SNR results for this arrangement will thus represent




an upper bound on the true detectability. This arrangement
also facilitates computation of the Wiener spectrum. which
requires images of a stationary. uniform background that
would have been difficult to achieve in the presence of the
highly non-uniform attenuation caused by the thorax. In
other respects, the conventional SPECT images usgd the
same acquisition parameters as the dec}ncated SPECT. Finally.
the planar views were acquired with the phamqm ﬂush
against one head, which acquired on a 12§x128 matrix with a
magnification factor of 2.0 (pixel size=2.33 mm).

For the tomographic geometries. ideal-observer SNRs for
the sinograms were calculated using equation (4). while
SNRs for reconstructed images were computed by the
following procedure:

1. The signal projections were scaled to simulate a desired
tumor-background concentration ratio (6:1 in this case) and
added to each of the 20 sets of background projections.

2. The slice through the center of the lesion was selected and
the 20 corresponding signal-plus-background sinograms were
reconstructed by filtered backprojection using ramp and
Hanning filters with various cutoff frequencies (0.4, 0.6. 0.8,
and 1.0 times the Nyquist frequency). The sinograms were
also processed using the effective 2D smoothing procedure
described above and reconstructed by filtered backprojection.

3. The 20 corresponding sinograms of background alone were
processed in the same way.

4. An average signal image was determined by subtracting
the average of the 20 background alone reconstructions from
the average of the 20 signal-plus-background reconstructions.
The signal power spectrum was computed by squaring the
Fourier transform of this image.

5. While SPECT images are not stationary in general, the
attenuated projections of a uniform cvlinder of this diameter
are quite flat over a broad central region. and thus one might
reasonably expect the reconstructed images of this cvlinder to
be locally stationary near their center. precisely where the
lesion is expected to lie {32]. The “local™ Wiener spectrum in
this region was computed from the 20 images of background
alone by subtracting the average background image from each
of the individual background images. resulting in 20) noise
images. Each such image was multiplied by a circularly
symmetric window of the form:

w(r)=1 for|r|<0.9R.
w(r)=0.5x(1+cos(m{Jr|—=0.9R)/ 0.2R).

for 0.9R <|r| < 1.1R. and
w(r)=0 for|rf>11R,

—
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(with appropriate shifting for the off-center cylinder in the
conventional geometry), where R is the radius of the circular
region over which the noise is expected to be stationary
(chosen to 6 pixels) and r the radial position in the image.
The result was centered and zero-padded to 128x128. The
noise power spectrum of each of the 20 images was
computed by taking the square of the Fourier transform of the
resulting image. The 20 noise power spectra were then
averaged and scaled so that the volume under the Wiener
spectrum equaled the average variance in the circle of radius R
[33-35]).

6. The ideal observer SNR was then determined by summing
the quotient of the calculated signal spectrum and Wiener
spectrum.

For planar views. the procedure was essentially the
same. without the reconstruction step but including the
application of the effective 2D smoothing. Signal spectry
were determined from the difference between the ensemble
averages of signal-plus-background images and background
images and Wiener spectra from the background images
alone. using the same rolled-oft cvlindrical window to isolate
a reasonably uniform region and to minimize truncation
effects. As a consistency check. equation (4) was also used to
calculate the SNR of the unsmoothed planar dataset.

Finally it should be noted that in using the ideal-
observer framework at all it is implicitly being assumed that
the data satisfy the assumptions discussed in section IL.B:
that the system is linear and that the noise in the planar or
reconstructed images i1s additive. Gaussian, zero-mean,
stationary. and independent of the presence or absence of the
signal. Given the reasonably high count levels (~10-15/pixel)
the fact that the signal is relatively small and low contrast,
and the discussion of stationarity in point 5 above, the
assumptions about the noise seem reasonable. The
requirement of linearity seemingly undermines the use of the
framework to analyze images that have been processed by
adaptive. effective multi-dimensional smoothing. However,
what is truly required for equation (3) to be meaningful is not
linearity in the face of any possible input but more
specifically that the system transfer function be the same
whether the particular signal of interest is present or absent
from the particular background of interest. Again. because the
signal in question is relatively small and low contrast, it
should not greatly affect the noise properties of the projection
images and thus the effective multi-dimensional smoothing
algorithm should yield a similar effective system transfer
function whether or not the signal is present.

III. RESULTS

The unsmoothed and smoothed planar views are shown in
Figure 1. The ideal-observer SNR for the planar views was
found to be 6.2 without processing (use of equations (3) and
(4) yielded the same result) and essentially the same, 6.4,
after adapuive. effective multi-dimensional smoothing

Figure 1. Planar images of a cylindrical phantom containing a 1-
cm, 6:1 lesion. The image on the left is unprocessed; the image
on the right has undergone adaptive, effective 2D smoothing.
The image on the left corresponds to a calculated SNR of 6.2, the
image on the right to an SNR of 6.4,




Table 1
Ideal Observer SNRs for conventional and dedicated SPECT
Processing Dedicated Breast { Conventional

Method SPECT SPECT?
Sinogram 10.7 6.7
Hanning (cutoff=0.4) 6.2 2.4
Hanning (cutoff=0.6) 8.0 3.1
Hanning (cutoff=0.8) 9.4 3.5
Hanning (cutoff=1.0) 9.9 3.7
Ramp (cutoft=0.4) 8.1 33
Ramp (cutoff=0.6) 9.7 3.7
Ramp (cutoff=0.8) 9.9 3.6
Ramp (cutoff=1.0) 9.3 3.7
Eff. 2D smoothing 10.6 5.5

TThe conventional SPECT SNRs represent an upper bound on
detectability (see section I1.C for details).

The ideal-observer SNRs for the detection of a lesion with
a 6:1 lesion-background concentration ratio are listed in Table
1 for the two different tomographic geometries.

It has been shown experimentally that the minimum
SNR necessary for a human observer to be able to detect
reltably a signal in a noisy background is 5.0 [36].
Regardless of the processing approach. the conventional
SPECT and planar geometries vield SNRs that are below or
only just above this threshold. The results above thus
confirm quantitatively the findings of Wang er al. that a 6:1
lesion of this size is difficult or impossible to detect using
planar or conventional SPECT geometries. but quite reliably
detectable using a dedicated geometry. The results also
indicate that effective two-dimensional smoothing provides
improvement in SNR over other filtering approaches. Images
corresponding to the two different geometries for selected
processing methods are shown in Figure 2. These confirm
visually the conclusions just stated: the 6:1 lesion is quite
visible in all of the dedicated reconstructions. while it is
effectively undetectable in the conventional reconstructions.
The 6:1 lesion is rather difficult to discern in both the
unprocessed and processed planar views depicted in Figure 1.

I'V. DISCUSSION AND CONCLUSIONS

The SNR values given in Table | suggest that a dedicated
SPECT geometry would lead to improved detectability for
clinically typical lesions over the planar and conventional
SPECT geometries. Recall that in the presence of attenuation
and scatter from the torso we would expect the difference
between the dedicated and conventional SPECT geometries to
be even greater than it is here. The success of the dedicated
geometry can be attributed to the fact that it combines the
advantages of the other two approaches: because of its small
radius of rotation, it offers good sensitivity and resolution
comparable to that of a planar view acquired with the
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scintillation camera flush against the phantom. while it
offers the improved contrast offered by a tomographic
system’s ability to separate lesion activity from overlving
and underlving activity.

Dedicated

Conventional

Hanning
(cutoff=0.8)

Ramp
(cutoff=0.6)

Eff. 2D
Smoothing

Figure 2: Reconstructed slices of a cylindrical phantom
containing a l-cm, 6:1 lesion for two different tomographic
geometries.

The SNR values also support the hypothesis that
adaptive, effective multi-dimensional smoothing may
improve lesion detectability relative to the other kinds of
filtering used in tomographic reconstruction. It is a fact that
processing or even image reconstruction can never improve
the ideal-observer SNR over that found in the raw projection
data. However, these operations can certainly diminish the
SNR if they are in some way singular and if the signal vector
has components in the null space. We observe that all the
reconstructed image SNRs are lower than those of their
corresponding sinograms. The differences among those
reconstructed image SNRs give some clue as to how much of
the information contained in those projections is preserved in
the reconstructed image. It would seem that the use of the
effective multi-dimensional smoothing prior to
reconstruction allows more of the information in the
projections to persist in the reconstructed images.

Finally, it should be noted that in the case of fully linear
imaging process. the calculated ideal-observer SNR should be
directly proportional to the lesion concentration and thus to
the tumor-background concentration ratio. This allows us to
express the SNRs as a function of tumor-background
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concentration ratio, C, yielding for instance an SNR of
1.7%C for the dedicated SPECT geometry using a Hanning
filter (cutoff=1.0), an SNR of 0.6*C for the conventional
SPECT geometry using the same filter, and an SNR of
1.0%C for the unprocessed planar geometry. Assuming that
an SNR of 5.0 corresponds to the threshold of detectability,
this allows us to conclude that for the specified imaging
times and lesion size, the minimum tumor-background ratios
required for detectability are approximately 2.9-to-1 for the
dedicated geometry, 8.3-to-1 for the conventional geometry,
and 5.0-to-1 for the planar geometry using the specified

filters.

Throughout this study we have been comparing the three
geometries on the assumption of equal total imaging times
(30 minutes) and implicitly assuming that in the planar
geometry we were examining the one of the two 15-minute
views in which the lesion appeared most prominently. It is
not necessarily possible to identify this view a priori, but
-assuming it were we can estimate the SNR corresponding to
a 30-minute acquisition at that single view. Because SNRs
for linear methods should in principle scale as the square root
of the imaging time, the SNR would be approximately 6.2 *
/2 = 8.8, or comparable to the dedicated SPECT SNR.

The dependence of the ideal-observer SNR on lesion size
remains a subject for future investigation.
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